ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.01364
  4. Cited By
An optimal control perspective on diffusion-based generative modeling

An optimal control perspective on diffusion-based generative modeling

2 November 2022
Julius Berner
Lorenz Richter
Karen Ullrich
    DiffM
ArXivPDFHTML

Papers citing "An optimal control perspective on diffusion-based generative modeling"

50 / 66 papers shown
Title
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
40
0
0
29 Apr 2025
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
50
0
0
16 Apr 2025
Improving the evaluation of samplers on multi-modal targets
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
107
0
0
11 Apr 2025
SpectR: Dynamically Composing LM Experts with Spectral Routing
SpectR: Dynamically Composing LM Experts with Spectral Routing
William Fleshman
Benjamin Van Durme
MoMe
MoE
60
0
0
04 Apr 2025
Underdamped Diffusion Bridges with Applications to Sampling
Denis Blessing
Julius Berner
Lorenz Richter
Gerhard Neumann
DiffM
39
1
0
02 Mar 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
43
0
0
01 Mar 2025
Value Gradient Sampler: Sampling as Sequential Decision Making
Value Gradient Sampler: Sampling as Sequential Decision Making
Sangwoong Yoon
Himchan Hwang
Hyeokju Jeong
Dong Kyu Shin
Che-Sang Park
Sehee Kwon
Frank C. Park
69
0
0
18 Feb 2025
Single-Step Consistent Diffusion Samplers
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
75
0
0
17 Feb 2025
Neural Flow Samplers with Shortcut Models
Neural Flow Samplers with Shortcut Models
Wuhao Chen
Zijing Ou
Yingzhen Li
85
0
0
11 Feb 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
60
3
0
10 Jan 2025
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
59
0
0
03 Jan 2025
Solving Inverse Problems via Diffusion Optimal Control
Solving Inverse Problems via Diffusion Optimal Control
Henry Li
Marcus Pereira
71
0
0
21 Dec 2024
Sampling from Boltzmann densities with physics informed low-rank formats
Sampling from Boltzmann densities with physics informed low-rank formats
Paul Hagemann
Janina Enrica Schutte
David Sommer
Martin Eigel
Gabriele Steidl
73
0
0
10 Dec 2024
Streaming Bayes GFlowNets
Streaming Bayes GFlowNets
Tiago da Silva
Daniel Augusto R. M. A. de Souza
Diego Mesquita
BDL
41
0
0
08 Nov 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
31
2
0
25 Oct 2024
Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task
  Learning
Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning
Yuxuan Ren
Dihan Zheng
Chang-Shu Liu
Peiran Jin
Yu Shi
Lin Huang
Jiyan He
Shengjie Luo
Tao Qin
Tie-Yan Liu
AI4CE
30
1
0
14 Oct 2024
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Byoungwoo Park
Hyungi Lee
Juho Lee
AI4TS
41
0
0
08 Oct 2024
Latent Abstractions in Generative Diffusion Models
Latent Abstractions in Generative Diffusion Models
Giulio Franzese
Mattia Martini
Giulio Corallo
Paolo Papotti
Pietro Michiardi
DiffM
31
0
0
04 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
43
9
0
03 Oct 2024
Stochastic Sampling from Deterministic Flow Models
Stochastic Sampling from Deterministic Flow Models
Saurabh Singh
Ian S. Fischer
34
2
0
03 Oct 2024
Equivariant score-based generative models provably learn distributions
  with symmetries efficiently
Equivariant score-based generative models provably learn distributions with symmetries efficiently
Ziyu Chen
M. Katsoulakis
Benjamin J. Zhang
DiffM
37
2
0
02 Oct 2024
HJ-sampler: A Bayesian sampler for inverse problems of a stochastic
  process by leveraging Hamilton-Jacobi PDEs and score-based generative models
HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models
Tingwei Meng
Zongren Zou
Jérome Darbon
George Karniadakis
DiffM
40
2
0
15 Sep 2024
Neural Entropy
Neural Entropy
Akhil Premkumar
DiffM
21
0
0
05 Sep 2024
Iterated Energy-based Flow Matching for Sampling from Boltzmann
  Densities
Iterated Energy-based Flow Matching for Sampling from Boltzmann Densities
Dongyeop Woo
Sungsoo Ahn
30
5
0
29 Aug 2024
Hamilton-Jacobi Reachability in Reinforcement Learning: A Survey
Hamilton-Jacobi Reachability in Reinforcement Learning: A Survey
Milan Ganai
Sicun Gao
Sylvia L. Herbert
32
6
0
12 Jul 2024
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OT
DiffM
34
8
0
10 Jul 2024
Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with
  Energy-Based Models
Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with Energy-Based Models
Sangwoong Yoon
Himchan Hwang
Dohyun Kwon
Yung-Kyun Noh
Frank C. Park
31
3
0
30 Jun 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
50
16
0
11 Jun 2024
A Diffusion Model Framework for Unsupervised Neural Combinatorial
  Optimization
A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization
Sebastian Sanokowski
Sepp Hochreiter
Sebastian Lehner
27
17
0
03 Jun 2024
Learning to Approximate Particle Smoothing Trajectories via Diffusion
  Generative Models
Learning to Approximate Particle Smoothing Trajectories via Diffusion Generative Models
Ella Tamir
Arno Solin
DiffM
31
0
0
01 Jun 2024
Amortizing intractable inference in diffusion models for vision, language, and control
Amortizing intractable inference in diffusion models for vision, language, and control
S. Venkatraman
Moksh Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
...
Alexandre Adam
Jarrid Rector-Brooks
Yoshua Bengio
Glen Berseth
Nikolay Malkin
68
24
0
31 May 2024
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Byoungwoo Park
Jungwon Choi
Sungbin Lim
Juho Lee
47
3
0
31 May 2024
Model-Based Diffusion for Trajectory Optimization
Model-Based Diffusion for Trajectory Optimization
Chaoyi Pan
Zeji Yi
Guanya Shi
Guannan Qu
45
6
0
28 May 2024
Nonlinear denoising score matching for enhanced learning of structured
  distributions
Nonlinear denoising score matching for enhanced learning of structured distributions
Jeremiah Birrell
M. Katsoulakis
Luc Rey-Bellet
Benjamin J. Zhang
Wei-wei Zhu
DiffM
23
1
0
24 May 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing
  Flows
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
34
1
0
23 May 2024
Control, Transport and Sampling: Towards Better Loss Design
Control, Transport and Sampling: Towards Better Loss Design
Qijia Jiang
David Nabergoj
OT
30
0
0
22 May 2024
Bridging discrete and continuous state spaces: Exploring the Ehrenfest
  process in time-continuous diffusion models
Bridging discrete and continuous state spaces: Exploring the Ehrenfest process in time-continuous diffusion models
Ludwig Winkler
Lorenz Richter
Manfred Opper
59
2
0
06 May 2024
Physics-Informed Diffusion Models
Physics-Informed Diffusion Models
Jan-Hendrik Bastek
WaiChing Sun
D. Kochmann
DiffM
AI4CE
47
10
0
21 Mar 2024
Soft-constrained Schrodinger Bridge: a Stochastic Control Approach
Soft-constrained Schrodinger Bridge: a Stochastic Control Approach
Jhanvi Garg
Xianyang Zhang
Quan Zhou
DiffM
OT
35
0
0
04 Mar 2024
Generative Modelling with Tensor Train approximations of
  Hamilton--Jacobi--Bellman equations
Generative Modelling with Tensor Train approximations of Hamilton--Jacobi--Bellman equations
David Sommer
Robert Gruhlke
Max Kirstein
Martin Eigel
Claudia Schillings
22
3
0
23 Feb 2024
Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized
  Control
Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized Control
Masatoshi Uehara
Yulai Zhao
Kevin Black
Ehsan Hajiramezanali
Gabriele Scalia
N. Diamant
Alex Tseng
Tommaso Biancalani
Sergey Levine
39
42
0
23 Feb 2024
Symbolic Music Generation with Non-Differentiable Rule Guided Diffusion
Symbolic Music Generation with Non-Differentiable Rule Guided Diffusion
Yujia Huang
Adishree S. Ghatare
Yuanzhe Liu
Ziniu Hu
Qinsheng Zhang
Chandramouli Shama Sastry
Siddharth Gururani
Sageev Oore
Yisong Yue
DiffM
48
21
0
22 Feb 2024
Stochastic Localization via Iterative Posterior Sampling
Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux
Maxence Noble
Marylou Gabrié
Alain Durmus
DiffM
38
12
0
16 Feb 2024
Particle Denoising Diffusion Sampler
Particle Denoising Diffusion Sampler
Angus Phillips
Hai-Dang Dau
M. Hutchinson
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
54
25
0
09 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
37
41
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
66
17
0
07 Feb 2024
Towards a Systems Theory of Algorithms
Towards a Systems Theory of Algorithms
Florian Dorfler
Zhiyu He
Giuseppe Belgioioso
S. Bolognani
John Lygeros
Michael Muehlebach
AI4CE
27
11
0
25 Jan 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
32
1
0
05 Jan 2024
Energy based diffusion generator for efficient sampling of Boltzmann
  distributions
Energy based diffusion generator for efficient sampling of Boltzmann distributions
Yan Wang
Ling Guo
Hao Wu
Tao Zhou
DiffM
34
3
0
04 Jan 2024
Stochastic Optimal Control Matching
Stochastic Optimal Control Matching
Carles Domingo-Enrich
Jiequn Han
Brandon Amos
Joan Bruna
Ricky T. Q. Chen
DiffM
18
6
0
04 Dec 2023
12
Next