ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.01111
  4. Cited By
On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT
  Setting

On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT Setting

2 November 2022
Fabian Wagner
Mareike Thies
Laura Pfaff
O. Aust
Sabrina Pechmann
D. Weidner
Noah Maul
M. Rohleder
Mingxuan Gu
Jonas Utz
Felix Denzinger
Andreas Maier
ArXivPDFHTML

Papers citing "On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT Setting"

6 / 6 papers shown
Title
Unsupervised Low-dose CT Reconstruction with One-way Conditional
  Normalizing Flows
Unsupervised Low-dose CT Reconstruction with One-way Conditional Normalizing Flows
Ran An
Ke Chen
Hongwei Li
OOD
21
0
0
23 Oct 2024
Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
  Reconstruction
Rotational Augmented Noise2Inverse for Low-dose Computed Tomography Reconstruction
Hang Xu
A. Perelli
18
1
0
19 Dec 2023
Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
  Sparse-View Tomography
Geometric Constraints Enable Self-Supervised Sinogram Inpainting in Sparse-View Tomography
Fabian Wagner
Mareike Thies
Noah Maul
Laura Pfaff
O. Aust
Sabrina Pechmann
Christopher Syben
Andreas Maier
30
1
0
13 Feb 2023
Gradient-Based Geometry Learning for Fan-Beam CT Reconstruction
Gradient-Based Geometry Learning for Fan-Beam CT Reconstruction
Mareike Thies
Fabian Wagner
Noah Maul
Lukas Folle
Manuela Meier
...
Mingxuan Gu
Jonas Utz
Felix Denzinger
M. Manhart
Andreas Maier
MedIm
17
9
0
05 Dec 2022
3D helical CT Reconstruction with a Memory Efficient Learned Primal-Dual
  Architecture
3D helical CT Reconstruction with a Memory Efficient Learned Primal-Dual Architecture
Jevgenija Rudzusika
Buda Bajić
Thomas Koehler
Ozan Oktem
MedIm
32
4
0
24 May 2022
Ultra Low-Parameter Denoising: Trainable Bilateral Filter Layers in
  Computed Tomography
Ultra Low-Parameter Denoising: Trainable Bilateral Filter Layers in Computed Tomography
Fabian Wagner
Mareike Thies
Mingxuan Gu
Yixing Huang
Sabrina Pechmann
...
O. Aust
S. Uderhardt
G. Schett
S. Christiansen
Andreas Maier
MedIm
AI4CE
34
22
0
25 Jan 2022
1