Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.00453
Cited By
The Perils of Learning From Unlabeled Data: Backdoor Attacks on Semi-supervised Learning
1 November 2022
Virat Shejwalkar
Lingjuan Lyu
Amir Houmansadr
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Perils of Learning From Unlabeled Data: Backdoor Attacks on Semi-supervised Learning"
8 / 8 papers shown
Title
Crowding Out The Noise: Algorithmic Collective Action Under Differential Privacy
Rushabh Solanki
Meghana Bhange
Ulrich Aïvodji
Elliot Creager
39
0
0
09 May 2025
Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks
Lukas Gosch
Mahalakshmi Sabanayagam
D. Ghoshdastidar
Stephan Günnemann
AAML
45
3
0
15 Jul 2024
Improving Group Robustness on Spurious Correlation Requires Preciser Group Inference
Yujin Han
Difan Zou
AAML
57
3
0
22 Apr 2024
Pruning the Unlabeled Data to Improve Semi-Supervised Learning
Guy Hacohen
D. Weinshall
SSL
26
1
0
27 Aug 2023
A Pathway Towards Responsible AI Generated Content
Chen Chen
Jie Fu
Lingjuan Lyu
49
71
0
02 Mar 2023
Rethinking Backdoor Data Poisoning Attacks in the Context of Semi-Supervised Learning
Marissa Connor
Vincent Emanuele
SILM
AAML
33
1
0
05 Dec 2022
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
Bowen Zhang
Yidong Wang
Wenxin Hou
Hao Wu
Jindong Wang
Manabu Okumura
T. Shinozaki
AAML
279
868
0
15 Oct 2021
Poisoning the Unlabeled Dataset of Semi-Supervised Learning
Nicholas Carlini
AAML
166
68
0
04 May 2021
1