ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.00188
  4. Cited By
Adaptive Compression for Communication-Efficient Distributed Training

Adaptive Compression for Communication-Efficient Distributed Training

31 October 2022
Maksim Makarenko
Elnur Gasanov
Rustem Islamov
Abdurakhmon Sadiev
Peter Richtárik
ArXivPDFHTML

Papers citing "Adaptive Compression for Communication-Efficient Distributed Training"

14 / 14 papers shown
Title
Loss Landscape Characterization of Neural Networks without
  Over-Parametrization
Loss Landscape Characterization of Neural Networks without Over-Parametrization
Rustem Islamov
Niccolò Ajroldi
Antonio Orvieto
Aurelien Lucchi
38
4
0
16 Oct 2024
Queuing dynamics of asynchronous Federated Learning
Queuing dynamics of asynchronous Federated Learning
Louis Leconte
Matthieu Jonckheere
S. Samsonov
Eric Moulines
FedML
45
5
0
12 Feb 2024
EControl: Fast Distributed Optimization with Compression and Error
  Control
EControl: Fast Distributed Optimization with Compression and Error Control
Yuan Gao
Rustem Islamov
Sebastian U. Stich
39
8
0
06 Nov 2023
Private Federated Learning with Autotuned Compression
Private Federated Learning with Autotuned Compression
Enayat Ullah
Christopher A. Choquette-Choo
Peter Kairouz
Sewoong Oh
FedML
19
6
0
20 Jul 2023
Accelerating Distributed ML Training via Selective Synchronization
Accelerating Distributed ML Training via Selective Synchronization
S. Tyagi
Martin Swany
FedML
36
3
0
16 Jul 2023
Towards a Better Theoretical Understanding of Independent Subnetwork
  Training
Towards a Better Theoretical Understanding of Independent Subnetwork Training
Egor Shulgin
Peter Richtárik
AI4CE
34
6
0
28 Jun 2023
FAVANO: Federated AVeraging with Asynchronous NOdes
FAVANO: Federated AVeraging with Asynchronous NOdes
Louis Leconte
Van Minh Nguyen
Eric Moulines
FedML
28
2
0
25 May 2023
Momentum Provably Improves Error Feedback!
Momentum Provably Improves Error Feedback!
Ilyas Fatkhullin
A. Tyurin
Peter Richtárik
38
20
0
24 May 2023
Permutation Compressors for Provably Faster Distributed Nonconvex
  Optimization
Permutation Compressors for Provably Faster Distributed Nonconvex Optimization
Rafal Szlendak
A. Tyurin
Peter Richtárik
133
35
0
07 Oct 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern
  Error Feedback
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
46
46
0
07 Oct 2021
FedDQ: Communication-Efficient Federated Learning with Descending
  Quantization
FedDQ: Communication-Efficient Federated Learning with Descending Quantization
Linping Qu
Shenghui Song
Chi-Ying Tsui
FedML
MQ
143
27
0
05 Oct 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
189
268
0
26 Feb 2021
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
Konstantin Mishchenko
Bokun Wang
D. Kovalev
Peter Richtárik
75
15
0
16 Feb 2021
FedPAQ: A Communication-Efficient Federated Learning Method with
  Periodic Averaging and Quantization
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
174
764
0
28 Sep 2019
1