ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.17378
  4. Cited By
Questioning the Validity of Summarization Datasets and Improving Their
  Factual Consistency

Questioning the Validity of Summarization Datasets and Improving Their Factual Consistency

31 October 2022
Yanzhu Guo
Chloé Clavel
Moussa Kamal Eddine
Michalis Vazirgiannis
    HILM
ArXivPDFHTML

Papers citing "Questioning the Validity of Summarization Datasets and Improving Their Factual Consistency"

13 / 13 papers shown
Title
Batayan: A Filipino NLP benchmark for evaluating Large Language Models
Batayan: A Filipino NLP benchmark for evaluating Large Language Models
Jann Railey Montalan
Jimson Paulo Layacan
David Demitri Africa
Richell Isaiah Flores
Michael T. Lopez II
Theresa Denise Magsajo
Anjanette Cayabyab
William-Chandra Tjhi
39
0
0
19 Feb 2025
Multi-News+: Cost-efficient Dataset Cleansing via LLM-based Data
  Annotation
Multi-News+: Cost-efficient Dataset Cleansing via LLM-based Data Annotation
Juhwan Choi
Jungmin Yun
Kyohoon Jin
Youngbin Kim
32
4
0
15 Apr 2024
Revealing Trends in Datasets from the 2022 ACL and EMNLP Conferences
Revealing Trends in Datasets from the 2022 ACL and EMNLP Conferences
Jesse Atuhurra
Hidetaka Kamigaito
39
0
0
31 Mar 2024
Improving Factual Error Correction for Abstractive Summarization via
  Data Distillation and Conditional-generation Cloze
Improving Factual Error Correction for Abstractive Summarization via Data Distillation and Conditional-generation Cloze
Yiyang Li
Lei Li
Dingxing Hu
Xueyi Hao
Marina Litvak
N. Vanetik
Yanquan Zhou
HILM
KELM
24
0
0
13 Feb 2024
The Curious Decline of Linguistic Diversity: Training Language Models on
  Synthetic Text
The Curious Decline of Linguistic Diversity: Training Language Models on Synthetic Text
Yanzhu Guo
Guokan Shang
Michalis Vazirgiannis
Chloé Clavel
34
48
0
16 Nov 2023
Can GPT models Follow Human Summarization Guidelines? A Study for Targeted Communication Goals
Can GPT models Follow Human Summarization Guidelines? A Study for Targeted Communication Goals
Yongxin Zhou
F. Ringeval
Franccois Portet
ELM
ALM
21
0
0
25 Oct 2023
PSentScore: Evaluating Sentiment Polarity in Dialogue Summarization
PSentScore: Evaluating Sentiment Polarity in Dialogue Summarization
Yongxin Zhou
F. Ringeval
Franccois Portet
27
1
0
23 Jul 2023
Abstractive Meeting Summarization: A Survey
Abstractive Meeting Summarization: A Survey
Virgile Rennard
Guokan Shang
Julie Hunter
Michalis Vazirgiannis
34
15
0
08 Aug 2022
The Factual Inconsistency Problem in Abstractive Text Summarization: A
  Survey
The Factual Inconsistency Problem in Abstractive Text Summarization: A Survey
Yi-Chong Huang
Xiachong Feng
Xiaocheng Feng
Bing Qin
HILM
133
105
0
30 Apr 2021
Understanding Factuality in Abstractive Summarization with FRANK: A
  Benchmark for Factuality Metrics
Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics
Artidoro Pagnoni
Vidhisha Balachandran
Yulia Tsvetkov
HILM
231
305
0
27 Apr 2021
Entity-level Factual Consistency of Abstractive Text Summarization
Entity-level Factual Consistency of Abstractive Text Summarization
Feng Nan
Ramesh Nallapati
Zhiguo Wang
Cicero Nogueira dos Santos
Henghui Zhu
Dejiao Zhang
Kathleen McKeown
Bing Xiang
HILM
144
157
0
18 Feb 2021
The GEM Benchmark: Natural Language Generation, its Evaluation and
  Metrics
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Sebastian Gehrmann
Tosin P. Adewumi
Karmanya Aggarwal
Pawan Sasanka Ammanamanchi
Aremu Anuoluwapo
...
Nishant Subramani
Wei-ping Xu
Diyi Yang
Akhila Yerukola
Jiawei Zhou
VLM
254
285
0
02 Feb 2021
Teaching Machines to Read and Comprehend
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
175
3,510
0
10 Jun 2015
1