ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.17319
  4. Cited By
Physics-Informed CNNs for Super-Resolution of Sparse Observations on
  Dynamical Systems

Physics-Informed CNNs for Super-Resolution of Sparse Observations on Dynamical Systems

31 October 2022
Daniel Kelshaw
Georgios Rigas
Luca Magri
    AI4CE
ArXivPDFHTML

Papers citing "Physics-Informed CNNs for Super-Resolution of Sparse Observations on Dynamical Systems"

8 / 8 papers shown
Title
How to Re-enable PDE Loss for Physical Systems Modeling Under Partial
  Observation
How to Re-enable PDE Loss for Physical Systems Modeling Under Partial Observation
Haodong Feng
Yue Wang
Dixia Fan
AI4CE
75
0
0
12 Dec 2024
Reconstructing unsteady flows from sparse, noisy measurements with a
  physics-constrained convolutional neural network
Reconstructing unsteady flows from sparse, noisy measurements with a physics-constrained convolutional neural network
Yaxin Mo
Luca Magri
AI4CE
28
0
0
30 Aug 2024
Thermodynamics-informed super-resolution of scarce temporal dynamics
  data
Thermodynamics-informed super-resolution of scarce temporal dynamics data
Carlos Bermejo-Barbanoj
B. Moya
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
21
2
0
27 Feb 2024
Interpretable structural model error discovery from sparse assimilation
  increments using spectral bias-reduced neural networks: A quasi-geostrophic
  turbulence test case
Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case
R. Mojgani
A. Chattopadhyay
P. Hassanzadeh
33
7
0
22 Sep 2023
Learning the solution operator of two-dimensional incompressible
  Navier-Stokes equations using physics-aware convolutional neural networks
Learning the solution operator of two-dimensional incompressible Navier-Stokes equations using physics-aware convolutional neural networks
Viktor Grimm
Alexander Heinlein
A. Klawonn
AI4CE
19
4
0
04 Aug 2023
Physics-Informed Computer Vision: A Review and Perspectives
Physics-Informed Computer Vision: A Review and Perspectives
C. Banerjee
Kien Nguyen
Clinton Fookes
G. Karniadakis
PINN
AI4CE
34
28
0
29 May 2023
Reconstruction, forecasting, and stability of chaotic dynamics from
  partial data
Reconstruction, forecasting, and stability of chaotic dynamics from partial data
Elise Özalp
G. Margazoglou
Luca Magri
AI4TS
13
10
0
24 May 2023
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
424
0
10 Mar 2020
1