ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.17159
  4. Cited By
PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks

PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks

31 October 2022
Yong-Min Shin
Sun-Woo Kim
Won-Yong Shin
ArXivPDFHTML

Papers citing "PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks"

6 / 6 papers shown
Title
Quantifying the Intrinsic Usefulness of Attributional Explanations for
  Graph Neural Networks with Artificial Simulatability Studies
Quantifying the Intrinsic Usefulness of Attributional Explanations for Graph Neural Networks with Artificial Simulatability Studies
Jonas Teufel
Luca Torresi
Pascal Friederich
FAtt
28
1
0
25 May 2023
MEGAN: Multi-Explanation Graph Attention Network
MEGAN: Multi-Explanation Graph Attention Network
Jonas Teufel
Luca Torresi
Patrick Reiser
Pascal Friederich
26
8
0
23 Nov 2022
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
118
142
0
05 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
167
593
0
31 Dec 2020
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
1