ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.16997
34
1
v1v2v3v4v5v6 (latest)

Convergence Rates of Stochastic Zeroth-order Gradient Descent for Ł ojasiewicz Functions

31 October 2022
Tianyu Wang
Yasong Feng
ArXiv (abs)PDFHTML
Abstract

We prove convergence rates of Stochastic Zeroth-order Gradient Descent (SZGD) algorithms for Lojasiewicz functions. The SZGD algorithm iterates as \begin{align*} \mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \widehat{\nabla} f (\mathbf{x}_t), \qquad t = 0,1,2,3,\cdots , \end{align*} where fff is the objective function that satisfies the \L ojasiewicz inequality with \L ojasiewicz exponent θ\thetaθ, ηt\eta_tηt​ is the step size (learning rate), and ∇^f(xt) \widehat{\nabla} f (\mathbf{x}_t) ∇f(xt​) is the approximate gradient estimated using zeroth-order information only. Our results show that {f(xt)−f(x∞)}t∈N \{ f (\mathbf{x}_t) - f (\mathbf{x}_\infty) \}_{t \in \mathbb{N} } {f(xt​)−f(x∞​)}t∈N​ can converge faster than {∥xt−x∞∥}t∈N \{ \| \mathbf{x}_t - \mathbf{x}_\infty \| \}_{t \in \mathbb{N} }{∥xt​−x∞​∥}t∈N​, regardless of whether the objective fff is smooth or nonsmooth.

View on arXiv
Comments on this paper