ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.16997
34
1
v1v2v3v4v5v6 (latest)

Almost Sure Convergence Rates of Stochastic Zeroth-order Gradient Descent for Łojasiewicz Functions

31 October 2022
Tianyu Wang
ArXiv (abs)PDFHTML
Abstract

We prove \emph{almost sure convergence rates} of Stochastic Zeroth-order Gradient Descent (SZGD) algorithms for \L ojasiewicz functions. The SZGD algorithm iterates as \begin{align*} x_{t+1} = x_t - \eta_t \widehat{\nabla} f (x_t), \qquad t = 0,1,2,3,\cdots , \end{align*} where fff is the objective function that satisfies the \L ojasiewicz inequality with \L ojasiewicz exponent θ\thetaθ, ηt\eta_tηt​ is the step size (learning rate), and ∇^f(xt) \widehat{\nabla} f (x_t) ∇f(xt​) is the approximate gradient estimated using zeroth-order information. We show that, for {smooth} \L ojasiewicz functions, the sequence {xt}t∈N\{ x_t \}_{t\in\mathbb{N}}{xt​}t∈N​ generated by SZGD converges to a bounded point x∞x_\inftyx∞​ almost surely, and x∞x_\inftyx∞​ is a critical point of fff. If θ∈(0,12]\theta \in (0,\frac{1}{2}]θ∈(0,21​], f(xt)−f(x∞) f (x_t) - f (x_\infty) f(xt​)−f(x∞​), ∑s=t∞∥xs+1−xs∥2 \sum_{s=t}^\infty \| x_{s+1} - x_{s} \|^2∑s=t∞​∥xs+1​−xs​∥2 and ∥xt−x∞∥ \| x_t - x_\infty \| ∥xt​−x∞​∥ (∥⋅∥\| \cdot \|∥⋅∥ is the Euclidean norm) converge to zero \emph{linearly almost surely}. If θ∈(12,1)\theta \in (\frac{1}{2}, 1)θ∈(21​,1), then f(xt)−f(x∞) f (x_t) - f (x_\infty) f(xt​)−f(x∞​) (and ∑s=t∞∥xs+1−xs∥2 \sum_{s=t}^\infty \| x_{s+1} - x_s \|^2 ∑s=t∞​∥xs+1​−xs​∥2) converges to zero at rate O(t11−2θ)O \left( t^{\frac{1}{1 - 2\theta}} \right) O(t1−2θ1​) almost surely; ∥xt−x∞∥ \| x_{t} - x_\infty \| ∥xt​−x∞​∥ converges to zero at rate O(t1−θ1−2θ)O \left( t^{\frac{1-\theta}{1-2\theta}} \right) O(t1−2θ1−θ​) almost surely. To the best of our knowledge, this paper provides the first \emph{almost sure convergence rate} guarantee for stochastic zeroth order algorithms for \L ojasiewicz functions.

View on arXiv
Comments on this paper