Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.15755
Cited By
Confident Approximate Policy Iteration for Efficient Local Planning in
q
π
q^π
q
π
-realizable MDPs
27 October 2022
Gellert Weisz
András Gyorgy
Tadashi Kozuno
Csaba Szepesvári
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Confident Approximate Policy Iteration for Efficient Local Planning in $q^π$-realizable MDPs"
5 / 5 papers shown
Title
Offline RL via Feature-Occupancy Gradient Ascent
Gergely Neu
Nneka Okolo
OffRL
43
0
0
22 May 2024
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Toshinori Kitamura
Tadashi Kozuno
Yunhao Tang
Nino Vieillard
Michal Valko
...
Olivier Pietquin
M. Geist
Csaba Szepesvári
Wataru Kumagai
Yutaka Matsuo
OffRL
35
3
0
22 May 2023
Exponential Hardness of Reinforcement Learning with Linear Function Approximation
Daniel M. Kane
Sihan Liu
Shachar Lovett
G. Mahajan
Csaba Szepesvári
Gellert Weisz
51
3
0
25 Feb 2023
Sample Efficient Deep Reinforcement Learning via Local Planning
Dong Yin
S. Thiagarajan
N. Lazić
Nived Rajaraman
Botao Hao
Csaba Szepesvári
30
4
0
29 Jan 2023
Approximation Benefits of Policy Gradient Methods with Aggregated States
Daniel Russo
45
7
0
22 Jul 2020
1