Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.15318
Cited By
Efficient and Effective Augmentation Strategy for Adversarial Training
27 October 2022
Sravanti Addepalli
Samyak Jain
R. Venkatesh Babu
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient and Effective Augmentation Strategy for Adversarial Training"
6 / 6 papers shown
Title
STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario
Renyang Liu
Kwok-Yan Lam
Wei Zhou
Sixing Wu
Jun Zhao
Dongting Hu
Mingming Gong
AAML
28
0
0
30 Mar 2024
PubDef: Defending Against Transfer Attacks From Public Models
Chawin Sitawarin
Jaewon Chang
David Huang
Wesson Altoyan
David A. Wagner
AAML
31
5
0
26 Oct 2023
Decoupled Kullback-Leibler Divergence Loss
Jiequan Cui
Zhuotao Tian
Zhisheng Zhong
Xiaojuan Qi
Bei Yu
Hanwang Zhang
39
38
0
23 May 2023
DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks
Samyak Jain
Sravanti Addepalli
P. Sahu
Priyam Dey
R. Venkatesh Babu
MoMe
OOD
43
20
0
28 Feb 2023
Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack
Yunfeng Diao
He-Nan Wang
Tianjia Shao
Yong-Liang Yang
Kun Zhou
David C. Hogg
Meng Wang
AAML
40
6
0
21 Nov 2022
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
231
677
0
19 Oct 2020
1