ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.14998
  4. Cited By
One Arrow, Two Kills: An Unified Framework for Achieving Optimal Regret
  Guarantees in Sleeping Bandits

One Arrow, Two Kills: An Unified Framework for Achieving Optimal Regret Guarantees in Sleeping Bandits

26 October 2022
Pierre Gaillard
Aadirupa Saha
Soham Dan
ArXivPDFHTML

Papers citing "One Arrow, Two Kills: An Unified Framework for Achieving Optimal Regret Guarantees in Sleeping Bandits"

28 / 28 papers shown
Title
Exploiting Correlation to Achieve Faster Learning Rates in Low-Rank
  Preference Bandits
Exploiting Correlation to Achieve Faster Learning Rates in Low-Rank Preference Bandits
Suprovat Ghoshal
Aadirupa Saha
39
11
0
23 Feb 2022
Versatile Dueling Bandits: Best-of-both-World Analyses for Online
  Learning from Preferences
Versatile Dueling Bandits: Best-of-both-World Analyses for Online Learning from Preferences
Aadirupa Saha
Pierre Gaillard
50
7
0
14 Feb 2022
Efficient and Optimal Algorithms for Contextual Dueling Bandits under
  Realizability
Efficient and Optimal Algorithms for Contextual Dueling Bandits under Realizability
Aadirupa Saha
A. Krishnamurthy
56
36
0
24 Nov 2021
Dueling Bandits with Adversarial Sleeping
Dueling Bandits with Adversarial Sleeping
Aadirupa Saha
Pierre Gaillard
15
8
0
05 Jul 2021
A closer look at temporal variability in dynamic online learning
A closer look at temporal variability in dynamic online learning
Nicolò Campolongo
Francesco Orabona
29
12
0
15 Feb 2021
Non-stationary Online Regression
Non-stationary Online Regression
Anant Raj
Pierre Gaillard
Christophe Saad
AI4TS
46
7
0
13 Nov 2020
Adversarial Dueling Bandits
Adversarial Dueling Bandits
Aadirupa Saha
Tomer Koren
Yishay Mansour
60
27
0
27 Oct 2020
Dynamic Regret of Convex and Smooth Functions
Dynamic Regret of Convex and Smooth Functions
Peng Zhao
Yu Zhang
Lijun Zhang
Zhi Zhou
68
102
0
07 Jul 2020
Improved Sleeping Bandits with Stochastic Actions Sets and Adversarial
  Rewards
Improved Sleeping Bandits with Stochastic Actions Sets and Adversarial Rewards
Aadirupa Saha
Pierre Gaillard
Michal Valko
11
19
0
14 Apr 2020
Introduction to Online Convex Optimization
Introduction to Online Convex Optimization
Elad Hazan
OffRL
132
1,926
0
07 Sep 2019
Adaptive Regret of Convex and Smooth Functions
Adaptive Regret of Convex and Smooth Functions
Lijun Zhang
Tie-Yan Liu
Zhi Zhou
ODL
55
45
0
26 Apr 2019
From PAC to Instance-Optimal Sample Complexity in the Plackett-Luce
  Model
From PAC to Instance-Optimal Sample Complexity in the Plackett-Luce Model
Aadirupa Saha
Aditya Gopalan
23
15
0
01 Mar 2019
Combinatorial Bandits with Relative Feedback
Combinatorial Bandits with Relative Feedback
Aadirupa Saha
Aditya Gopalan
22
29
0
01 Mar 2019
PAC Battling Bandits in the Plackett-Luce Model
PAC Battling Bandits in the Plackett-Luce Model
Aadirupa Saha
Aditya Gopalan
50
33
0
12 Aug 2018
Preference-based Online Learning with Dueling Bandits: A Survey
Preference-based Online Learning with Dueling Bandits: A Survey
Viktor Bengs
R. Busa-Fekete
Adil El Mesaoudi-Paul
Eyke Hüllermeier
76
113
0
30 Jul 2018
PAC Ranking from Pairwise and Listwise Queries: Lower Bounds and Upper
  Bounds
PAC Ranking from Pairwise and Listwise Queries: Lower Bounds and Upper Bounds
Wenbo Ren
Jia-Wei Liu
Ness B. Shroff
25
31
0
08 Jun 2018
Tracking the Best Expert in Non-stationary Stochastic Environments
Tracking the Best Expert in Non-stationary Stochastic Environments
Chen-Yu Wei
Yi-Te Hong
Chi-Jen Lu
33
59
0
02 Dec 2017
Multi-dueling Bandits with Dependent Arms
Multi-dueling Bandits with Dependent Arms
Yanan Sui
Vincent Zhuang
J. W. Burdick
Yisong Yue
105
80
0
29 Apr 2017
Corralling a Band of Bandit Algorithms
Corralling a Band of Bandit Algorithms
Alekh Agarwal
Haipeng Luo
Behnam Neyshabur
Robert Schapire
115
157
0
19 Dec 2016
Multi-Dueling Bandits and Their Application to Online Ranker Evaluation
Multi-Dueling Bandits and Their Application to Online Ranker Evaluation
B. Brost
Yevgeny Seldin
Ingemar J. Cox
Christina Lioma
52
41
0
22 Aug 2016
Double Thompson Sampling for Dueling Bandits
Double Thompson Sampling for Dueling Bandits
Huasen Wu
Xin Liu
88
87
0
25 Apr 2016
Hardness of Online Sleeping Combinatorial Optimization Problems
Hardness of Online Sleeping Combinatorial Optimization Problems
Satyen Kale
Chansoo Lee
D. Pál
25
16
0
11 Sep 2015
Regret Lower Bound and Optimal Algorithm in Dueling Bandit Problem
Regret Lower Bound and Optimal Algorithm in Dueling Bandit Problem
Junpei Komiyama
Junya Honda
H. Kashima
Hiroshi Nakagawa
133
92
0
08 Jun 2015
Copeland Dueling Bandits
Copeland Dueling Bandits
M. Zoghi
Zohar Karnin
Shimon Whiteson
Maarten de Rijke
102
89
0
01 Jun 2015
Reducing Dueling Bandits to Cardinal Bandits
Reducing Dueling Bandits to Cardinal Bandits
Nir Ailon
Thorsten Joachims
Zohar Karnin
114
138
0
14 May 2014
A Second-order Bound with Excess Losses
A Second-order Bound with Excess Losses
Pierre Gaillard
Gilles Stoltz
T. Erven
61
152
0
10 Feb 2014
Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem
Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem
M. Zoghi
Shimon Whiteson
Rémi Munos
Maarten de Rijke
75
143
0
12 Dec 2013
Random Utility Theory for Social Choice
Random Utility Theory for Social Choice
Hossein Azari Soufiani
David C. Parkes
Lirong Xia
84
151
0
11 Nov 2012
1