ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.14606
  4. Cited By
Analyzing Multi-Task Learning for Abstractive Text Summarization

Analyzing Multi-Task Learning for Abstractive Text Summarization

26 October 2022
Frederic Kirstein
Jan Philip Wahle
Terry Ruas
Bela Gipp
ArXivPDFHTML

Papers citing "Analyzing Multi-Task Learning for Abstractive Text Summarization"

7 / 7 papers shown
Title
Paraphrase Detection: Human vs. Machine Content
Paraphrase Detection: Human vs. Machine Content
Jonas Becker
Jan Philip Wahle
Terry Ruas
Bela Gipp
DeLMO
35
13
0
24 Mar 2023
Neural Media Bias Detection Using Distant Supervision With BABE -- Bias
  Annotations By Experts
Neural Media Bias Detection Using Distant Supervision With BABE -- Bias Annotations By Experts
Timo Spinde
Manuel Plank
Jan-David Krieger
Terry Ruas
Bela Gipp
Akiko Aizawa
27
68
0
29 Sep 2022
The Factual Inconsistency Problem in Abstractive Text Summarization: A
  Survey
The Factual Inconsistency Problem in Abstractive Text Summarization: A Survey
Yi-Chong Huang
Xiachong Feng
Xiaocheng Feng
Bing Qin
HILM
136
105
0
30 Apr 2021
CTRLsum: Towards Generic Controllable Text Summarization
CTRLsum: Towards Generic Controllable Text Summarization
Junxian He
Wojciech Kry'sciñski
Bryan McCann
Nazneen Rajani
Caiming Xiong
216
138
0
08 Dec 2020
ANLIzing the Adversarial Natural Language Inference Dataset
ANLIzing the Adversarial Natural Language Inference Dataset
Adina Williams
Tristan Thrush
Douwe Kiela
AAML
179
46
0
24 Oct 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
299
6,984
0
20 Apr 2018
Teaching Machines to Read and Comprehend
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
196
3,513
0
10 Jun 2015
1