ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.13673
  4. Cited By
Evaluating Parameter Efficient Learning for Generation

Evaluating Parameter Efficient Learning for Generation

25 October 2022
Peng-Tao Xu
M. Patwary
Shrimai Prabhumoye
Virginia Adams
R. Prenger
Wei Ping
Nayeon Lee
M. Shoeybi
Bryan Catanzaro
    MoE
ArXivPDFHTML

Papers citing "Evaluating Parameter Efficient Learning for Generation"

10 / 10 papers shown
Title
Towards Better Parameter-Efficient Fine-Tuning for Large Language
  Models: A Position Paper
Towards Better Parameter-Efficient Fine-Tuning for Large Language Models: A Position Paper
Chengyu Wang
Junbing Yan
Wei Zhang
Jun Huang
ALM
40
3
0
22 Nov 2023
Low-rank Adaptation of Large Language Model Rescoring for
  Parameter-Efficient Speech Recognition
Low-rank Adaptation of Large Language Model Rescoring for Parameter-Efficient Speech Recognition
Yu Yu
Chao-Han Huck Yang
J. Kolehmainen
Prashanth Gurunath Shivakumar
Yile Gu
...
Denis Filimonov
Shalini Ghosh
A. Stolcke
Ariya Rastrow
I. Bulyko
29
8
0
26 Sep 2023
PEFT-Ref: A Modular Reference Architecture and Typology for
  Parameter-Efficient Finetuning Techniques
PEFT-Ref: A Modular Reference Architecture and Typology for Parameter-Efficient Finetuning Techniques
Mohammed Sabry
Anya Belz
36
8
0
24 Apr 2023
SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer
SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer
Tu Vu
Brian Lester
Noah Constant
Rami Al-Rfou
Daniel Matthew Cer
VLM
LRM
137
277
0
15 Oct 2021
Increasing Faithfulness in Knowledge-Grounded Dialogue with Controllable
  Features
Increasing Faithfulness in Knowledge-Grounded Dialogue with Controllable Features
Hannah Rashkin
David Reitter
Gaurav Singh Tomar
Dipanjan Das
155
101
0
14 Jul 2021
The Factual Inconsistency Problem in Abstractive Text Summarization: A
  Survey
The Factual Inconsistency Problem in Abstractive Text Summarization: A Survey
Yi-Chong Huang
Xiachong Feng
Xiaocheng Feng
Bing Qin
HILM
133
104
0
30 Apr 2021
Understanding Factuality in Abstractive Summarization with FRANK: A
  Benchmark for Factuality Metrics
Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics
Artidoro Pagnoni
Vidhisha Balachandran
Yulia Tsvetkov
HILM
225
305
0
27 Apr 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,844
0
18 Apr 2021
Towards Faithfulness in Open Domain Table-to-text Generation from an
  Entity-centric View
Towards Faithfulness in Open Domain Table-to-text Generation from an Entity-centric View
Tianyu Liu
Xin Zheng
Baobao Chang
Zhifang Sui
119
35
0
17 Feb 2021
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,817
0
17 Sep 2019
1