18
5

Optimization-based Motion Planning for Autonomous Parking Considering Dynamic Obstacle: A Hierarchical Framework

Abstract

This paper introduces a hierarchical framework that integrates graph search algorithms and model predictive control to facilitate efficient parking maneuvers for Autonomous Vehicles (AVs) in constrained environments. In the high-level planning phase, the framework incorporates scenario-based hybrid A* (SHA*), an optimized variant of traditional Hybrid A*, to generate an initial path while considering static obstacles. This global path serves as an initial guess for the low-level NLP problem. In the low-level optimizing phase, a nonlinear model predictive control (NMPC)-based framework is deployed to circumvent dynamic obstacles. The performance of SHA* is empirically validated through 148 simulation scenarios, and the efficacy of the proposed hierarchical framework is demonstrated via a real-time parallel parking simulation.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.