Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.13014
Cited By
Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks
24 October 2022
Chenxiao Yang
Qitian Wu
Junchi Yan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks"
9 / 9 papers shown
Title
Teaching MLP More Graph Information: A Three-stage Multitask Knowledge Distillation Framework
Junxian Li
Bin Shi
Erfei Cui
Hua Wei
Qinghua Zheng
43
0
0
02 Mar 2024
GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks
Wentao Zhao
Qitian Wu
Chenxiao Yang
Junchi Yan
24
12
0
20 Jun 2023
Knowledge Distillation on Graphs: A Survey
Yijun Tian
Shichao Pei
Xiangliang Zhang
Chuxu Zhang
Nitesh V. Chawla
18
28
0
01 Feb 2023
Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs
Chenxiao Yang
Qitian Wu
Jiahua Wang
Junchi Yan
AI4CE
19
51
0
18 Dec 2022
Cross-Task Knowledge Distillation in Multi-Task Recommendation
Chenxiao Yang
Junwei Pan
Xiaofeng Gao
Tingyu Jiang
Dapeng Liu
Guihai Chen
34
44
0
20 Feb 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,104
0
27 Apr 2021
Distilling Knowledge from Graph Convolutional Networks
Yiding Yang
Jiayan Qiu
Mingli Song
Dacheng Tao
Xinchao Wang
160
226
0
23 Mar 2020
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,236
0
24 Nov 2016
1