Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.12378
Cited By
Correcting Diverse Factual Errors in Abstractive Summarization via Post-Editing and Language Model Infilling
22 October 2022
Vidhisha Balachandran
Hannaneh Hajishirzi
William W. Cohen
Yulia Tsvetkov
HILM
KELM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Correcting Diverse Factual Errors in Abstractive Summarization via Post-Editing and Language Model Infilling"
15 / 15 papers shown
Title
Revealing and Mitigating Over-Attention in Knowledge Editing
Pinzheng Wang
Zecheng Tang
Keyan Zhou
J. Li
Qiaoming Zhu
Hao Fei
KELM
120
2
0
21 Feb 2025
Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation
Sha Li
Naren Ramakrishnan
RALM
KELM
154
1
0
18 Feb 2025
Factual Dialogue Summarization via Learning from Large Language Models
Rongxin Zhu
Jey Han Lau
Jianzhong Qi
HILM
52
1
0
20 Jun 2024
A Comprehensive Survey on Process-Oriented Automatic Text Summarization with Exploration of LLM-Based Methods
Hanlei Jin
Yang Zhang
Dan Meng
Jun Wang
Jinghua Tan
68
80
0
05 Mar 2024
KGQuiz: Evaluating the Generalization of Encoded Knowledge in Large Language Models
Yuyang Bai
Shangbin Feng
Vidhisha Balachandran
Zhaoxuan Tan
Shiqi Lou
Tianxing He
Yulia Tsvetkov
ELM
40
2
0
15 Oct 2023
Parameter Efficient Audio Captioning With Faithful Guidance Using Audio-text Shared Latent Representation
A. Sridhar
Yinyi Guo
Erik M. Visser
Rehana Mahfuz
34
5
0
06 Sep 2023
Annotating and Detecting Fine-grained Factual Errors for Dialogue Summarization
Rongxin Zhu
Jianzhong Qi
Jey Han Lau
42
9
0
26 May 2023
On Improving Summarization Factual Consistency from Natural Language Feedback
Yixin Liu
Budhaditya Deb
Milagro Teruel
Aaron L Halfaker
Dragomir R. Radev
Ahmed Hassan Awadallah
HILM
29
35
0
20 Dec 2022
RARR: Researching and Revising What Language Models Say, Using Language Models
Luyu Gao
Zhuyun Dai
Panupong Pasupat
Anthony Chen
Arun Tejasvi Chaganty
...
Vincent Zhao
Ni Lao
Hongrae Lee
Da-Cheng Juan
Kelvin Guu
HILM
KELM
41
257
0
17 Oct 2022
Counterfactual Data Augmentation improves Factuality of Abstractive Summarization
Dheeraj Rajagopal
Siamak Shakeri
Cicero Nogueira dos Santos
Eduard H. Hovy
Chung-Ching Chang
HILM
74
10
0
25 May 2022
The Factual Inconsistency Problem in Abstractive Text Summarization: A Survey
Yi-Chong Huang
Xiachong Feng
Xiaocheng Feng
Bing Qin
HILM
136
105
0
30 Apr 2021
Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics
Artidoro Pagnoni
Vidhisha Balachandran
Yulia Tsvetkov
HILM
231
305
0
27 Apr 2021
Factual Error Correction for Abstractive Summarization Models
Mengyao Cao
Yue Dong
Jiapeng Wu
Jackie C.K. Cheung
HILM
KELM
169
159
0
17 Oct 2020
Text Summarization with Pretrained Encoders
Yang Liu
Mirella Lapata
MILM
258
1,433
0
22 Aug 2019
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
184
3,513
0
10 Jun 2015
1