ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.09759
  4. Cited By
Pareto Manifold Learning: Tackling multiple tasks via ensembles of
  single-task models

Pareto Manifold Learning: Tackling multiple tasks via ensembles of single-task models

18 October 2022
Nikolaos Dimitriadis
P. Frossard
Franccois Fleuret
ArXivPDFHTML

Papers citing "Pareto Manifold Learning: Tackling multiple tasks via ensembles of single-task models"

26 / 26 papers shown
Title
PARM: Multi-Objective Test-Time Alignment via Preference-Aware Autoregressive Reward Model
PARM: Multi-Objective Test-Time Alignment via Preference-Aware Autoregressive Reward Model
Baijiong Lin
Weisen Jiang
Yuancheng Xu
Hao Chen
Ying Chen
26
0
0
06 May 2025
Exact Unlearning of Finetuning Data via Model Merging at Scale
Exact Unlearning of Finetuning Data via Model Merging at Scale
Kevin Kuo
Amrith Rajagopal Setlur
Kartik Srinivas
Aditi Raghunathan
Virginia Smith
MoMe
CLL
MU
45
0
0
06 Apr 2025
Soup-of-Experts: Pretraining Specialist Models via Parameters Averaging
Soup-of-Experts: Pretraining Specialist Models via Parameters Averaging
Pierre Ablin
Angelos Katharopoulos
Skyler Seto
David Grangier
MoMe
50
0
0
03 Feb 2025
Gradient-Based Multi-Objective Deep Learning: Algorithms, Theories, Applications, and Beyond
Gradient-Based Multi-Objective Deep Learning: Algorithms, Theories, Applications, and Beyond
Weiyu Chen
Xiaoyuan Zhang
Baijiong Lin
Xi Victoria Lin
Han Zhao
Qingfu Zhang
James T. Kwok
75
2
0
19 Jan 2025
MTPareto: A MultiModal Targeted Pareto Framework for Fake News Detection
MTPareto: A MultiModal Targeted Pareto Framework for Fake News Detection
Kaiying Yan
Moyang Liu
Yukun Liu
Ruibo Fu
Zhengqi Wen
J. Tao
Xuefei Liu
Guanjun Li
36
0
0
12 Jan 2025
Parameter-Efficient Interventions for Enhanced Model Merging
Parameter-Efficient Interventions for Enhanced Model Merging
Marcin Osial
Daniel Marczak
Bartosz Zieliñski
MoMe
84
1
0
22 Dec 2024
Federated Communication-Efficient Multi-Objective Optimization
Federated Communication-Efficient Multi-Objective Optimization
Baris Askin
Pranay Sharma
Gauri Joshi
Carlee Joe-Wong
FedML
64
1
0
21 Oct 2024
Diversity-Rewarded CFG Distillation
Diversity-Rewarded CFG Distillation
Geoffrey Cideron
A. Agostinelli
Johan Ferret
Sertan Girgin
Romuald Elie
Olivier Bachem
Sarah Perrin
Alexandre Ramé
39
2
0
08 Oct 2024
All-in-One Image Coding for Joint Human-Machine Vision with Multi-Path
  Aggregation
All-in-One Image Coding for Joint Human-Machine Vision with Multi-Path Aggregation
Xu Zhang
Peiyao Guo
Ming-Tse Lu
Zhan Ma
40
2
0
29 Sep 2024
Preference-Optimized Pareto Set Learning for Blackbox Optimization
Preference-Optimized Pareto Set Learning for Blackbox Optimization
Zhang Haishan
Diptesh Das
Koji Tsuda
41
1
0
19 Aug 2024
Efficient Pareto Manifold Learning with Low-Rank Structure
Efficient Pareto Manifold Learning with Low-Rank Structure
Weiyu Chen
James T. Kwok
33
6
0
30 Jul 2024
Pareto Low-Rank Adapters: Efficient Multi-Task Learning with Preferences
Pareto Low-Rank Adapters: Efficient Multi-Task Learning with Preferences
Nikolaos Dimitriadis
Pascal Frossard
F. Fleuret
MoE
64
6
0
10 Jul 2024
Towards Efficient Pareto Set Approximation via Mixture of Experts Based
  Model Fusion
Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion
Anke Tang
Li Shen
Yong Luo
Shiwei Liu
Han Hu
Jia Wu
MoMe
25
6
0
14 Jun 2024
Nonconvex Federated Learning on Compact Smooth Submanifolds With
  Heterogeneous Data
Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous Data
Jiaojiao Zhang
Jiang Hu
Anthony Man-Cho So
Mikael Johansson
37
2
0
12 Jun 2024
Preparing for Black Swans: The Antifragility Imperative for Machine
  Learning
Preparing for Black Swans: The Antifragility Imperative for Machine Learning
Ming Jin
36
2
0
18 May 2024
Localizing Task Information for Improved Model Merging and Compression
Localizing Task Information for Improved Model Merging and Compression
Ke Wang
Nikolaos Dimitriadis
Guillermo Ortiz-Jimenez
Franccois Fleuret
Pascal Frossard
MoMe
33
46
0
13 May 2024
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Idan Achituve
I. Diamant
Arnon Netzer
Gal Chechik
Ethan Fetaya
UQCV
32
4
0
06 Feb 2024
WARM: On the Benefits of Weight Averaged Reward Models
WARM: On the Benefits of Weight Averaged Reward Models
Alexandre Ramé
Nino Vieillard
Léonard Hussenot
Robert Dadashi
Geoffrey Cideron
Olivier Bachem
Johan Ferret
111
93
0
22 Jan 2024
Deep Model Fusion: A Survey
Deep Model Fusion: A Survey
Weishi Li
Yong Peng
Miao Zhang
Liang Ding
Han Hu
Li Shen
FedML
MoMe
30
51
0
27 Sep 2023
UnIVAL: Unified Model for Image, Video, Audio and Language Tasks
UnIVAL: Unified Model for Image, Video, Audio and Language Tasks
Mustafa Shukor
Corentin Dancette
Alexandre Ramé
Matthieu Cord
MoMe
MLLM
61
42
0
30 Jul 2023
Rewarded soups: towards Pareto-optimal alignment by interpolating
  weights fine-tuned on diverse rewards
Rewarded soups: towards Pareto-optimal alignment by interpolating weights fine-tuned on diverse rewards
Alexandre Ramé
Guillaume Couairon
Mustafa Shukor
Corentin Dancette
Jean-Baptiste Gaya
Laure Soulier
Matthieu Cord
MoMe
35
136
0
07 Jun 2023
Do Current Multi-Task Optimization Methods in Deep Learning Even Help?
Do Current Multi-Task Optimization Methods in Deep Learning Even Help?
Derrick Xin
Behrooz Ghorbani
Ankush Garg
Orhan Firat
Justin Gilmer
MoMe
73
63
0
23 Sep 2022
Efficiently Identifying Task Groupings for Multi-Task Learning
Efficiently Identifying Task Groupings for Multi-Task Learning
Christopher Fifty
Ehsan Amid
Zhe Zhao
Tianhe Yu
Rohan Anil
Chelsea Finn
206
238
1
10 Sep 2021
Controllable Pareto Multi-Task Learning
Controllable Pareto Multi-Task Learning
Xi Lin
Zhiyuan Yang
Qingfu Zhang
Sam Kwong
MoE
77
73
0
13 Oct 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
446
15,639
0
02 Nov 2015
1