Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.09126
Cited By
Verifiable and Provably Secure Machine Unlearning
17 October 2022
Thorsten Eisenhofer
Doreen Riepel
Varun Chandrasekaran
Esha Ghosh
O. Ohrimenko
Nicolas Papernot
AAML
MU
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Verifiable and Provably Secure Machine Unlearning"
21 / 21 papers shown
Title
A Framework for Cryptographic Verifiability of End-to-End AI Pipelines
Kar Balan
Robert Learney
Tim Wood
34
0
0
28 Mar 2025
Soft Token Attacks Cannot Reliably Audit Unlearning in Large Language Models
Haokun Chen
Sebastian Szyller
Weilin Xu
N. Himayat
MU
AAML
43
0
0
20 Feb 2025
Verification of Machine Unlearning is Fragile
Binchi Zhang
Zihan Chen
Cong Shen
Jundong Li
AAML
71
5
0
01 Aug 2024
Laminator: Verifiable ML Property Cards using Hardware-assisted Attestations
Vasisht Duddu
Oskari Jarvinen
Lachlan J. Gunn
Nirmal Asokan
69
1
0
25 Jun 2024
Federated Learning with Blockchain-Enhanced Machine Unlearning: A Trustworthy Approach
Xuhan Zuo
Minghao Wang
Tianqing Zhu
Lefeng Zhang
Shui Yu
Wanlei Zhou
MU
29
4
0
27 May 2024
Unlearning during Learning: An Efficient Federated Machine Unlearning Method
Hanlin Gu
Gongxi Zhu
Jie Zhang
Xinyuan Zhao
Yuxing Han
Lixin Fan
Qiang Yang
MU
38
7
0
24 May 2024
zkLLM: Zero Knowledge Proofs for Large Language Models
Haochen Sun
Jason Li
Hongyang Zhang
ALM
34
22
0
24 Apr 2024
Attesting Distributional Properties of Training Data for Machine Learning
Vasisht Duddu
Anudeep Das
Nora Khayata
Hossein Yalame
T. Schneider
Nirmal Asokan
40
5
0
18 Aug 2023
Machine Unlearning: Solutions and Challenges
Jie Xu
Zihan Wu
Cong Wang
Xiaohua Jia
MU
40
46
0
14 Aug 2023
zkDL: Efficient Zero-Knowledge Proofs of Deep Learning Training
Hao-Lun Sun
Tonghe Bai
Jason Li
Hongyang R. Zhang
34
19
0
30 Jul 2023
Ticketed Learning-Unlearning Schemes
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Ayush Sekhari
Chiyuan Zhang
MU
38
7
0
27 Jun 2023
Machine Unlearning: its nature, scope, and importance for a "delete culture"
Luciano Floridi
AILaw
MU
32
6
0
24 May 2023
Exploring the Landscape of Machine Unlearning: A Comprehensive Survey and Taxonomy
T. Shaik
Xiaohui Tao
Haoran Xie
Lin Li
Xiaofeng Zhu
Qingyuan Li
MU
36
25
0
10 May 2023
DeepReShape: Redesigning Neural Networks for Efficient Private Inference
N. Jha
Brandon Reagen
30
10
0
20 Apr 2023
Training Data Influence Analysis and Estimation: A Survey
Zayd Hammoudeh
Daniel Lowd
TDI
29
82
0
09 Dec 2022
Knowledge Unlearning for Mitigating Privacy Risks in Language Models
Joel Jang
Dongkeun Yoon
Sohee Yang
Sungmin Cha
Moontae Lee
Lajanugen Logeswaran
Minjoon Seo
KELM
PILM
MU
147
191
0
04 Oct 2022
VeriFi: Towards Verifiable Federated Unlearning
Xiangshan Gao
Xingjun Ma
Jingyi Wang
Youcheng Sun
Bo Li
S. Ji
Peng Cheng
Jiming Chen
MU
65
46
0
25 May 2022
Manipulating SGD with Data Ordering Attacks
Ilia Shumailov
Zakhar Shumaylov
Dmitry Kazhdan
Yiren Zhao
Nicolas Papernot
Murat A. Erdogdu
Ross J. Anderson
AAML
112
90
0
19 Apr 2021
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?
Gavin Brown
Mark Bun
Vitaly Feldman
Adam D. Smith
Kunal Talwar
253
93
0
11 Dec 2020
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Thomas Baumhauer
Pascal Schöttle
Matthias Zeppelzauer
MU
107
130
0
07 Feb 2020
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramèr
Dan Boneh
FedML
114
395
0
08 Jun 2018
1