ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.08871
  4. Cited By
Industry-Scale Orchestrated Federated Learning for Drug Discovery
v1v2 (latest)

Industry-Scale Orchestrated Federated Learning for Drug Discovery

17 October 2022
M. Oldenhof
G. Ács
Balázs Pejó
A. Schuffenhauer
Nicholas Holway
Noé Sturm
Arne Dieckmann
Oliver Fortmeier
Eric Boniface
Clément Mayer
Arnaud Gohier
Peter Schmidtke
Ritsuya Niwayama
D. Kopecky
Lewis H. Mervin
P. C. Rathi
Lukas Friedrich
András Formanek
Peter Antal
J. Rahaman
Adam Zalewski
Wouter Heyndrickx
Ezron Oluoch
Manuel Stößel
Michal Vanco
David Endico
Fabien Gelus
Thaïs de Boisfossé
Adrien Darbier
Ashley Nicollet
M. Blottiere
Maria Teleńczuk
Van Tien Nguyen
Thibaud Martinez
Camille Boillet
K. Moutet
Alexandre Picosson
Aurélien Gasser
Inal Djafar
Antoine Simon
Adam Arany
Jaak Simm
Yves Moreau
Ola Engkvist
Hugo Ceulemans
Camille Marini
M. Galtier
    FedML
ArXiv (abs)PDFHTML

Papers citing "Industry-Scale Orchestrated Federated Learning for Drug Discovery"

16 / 16 papers shown
Title
Federated Learning in Chemical Engineering: A Tutorial on a Framework for Privacy-Preserving Collaboration Across Distributed Data Sources
Federated Learning in Chemical Engineering: A Tutorial on a Framework for Privacy-Preserving Collaboration Across Distributed Data Sources
Siddhant Dutta
Iago Leal de Freitas
Pedro Maciel Xavier
Claudio Miceli de Farias
David E. Bernal Neira
AI4CEFedML
150
0
0
23 Nov 2024
Free-Rider and Conflict Aware Collaboration Formation for Cross-Silo Federated Learning
Free-Rider and Conflict Aware Collaboration Formation for Cross-Silo Federated Learning
Mengmeng Chen
Xiaohu Wu
Xiaoli Tang
Tiantian He
Yew-Soon Ong
Qiqi Liu
Qicheng Lao
Han Yu
FedML
71
4
0
25 Oct 2024
Collaborative Drug Discovery: Inference-level Data Protection
  Perspective
Collaborative Drug Discovery: Inference-level Data Protection Perspective
Balázs Pejó
Mina Remeli
Adam Arany
M. Galtier
G. Ács
62
3
0
13 May 2022
SparseChem: Fast and accurate machine learning model for small molecules
SparseChem: Fast and accurate machine learning model for small molecules
Adam Arany
Jaak Simm
M. Oldenhof
Yves Moreau
31
7
0
09 Mar 2022
Membership Inference Attacks on Machine Learning: A Survey
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
114
437
0
14 Mar 2021
Federated Learning: Opportunities and Challenges
Federated Learning: Opportunities and Challenges
P. Mammen
FedML
103
224
0
14 Jan 2021
A Principled Approach to Data Valuation for Federated Learning
A Principled Approach to Data Valuation for Federated Learning
Tianhao Wang
Johannes Rausch
Ce Zhang
R. Jia
Basel Alomair
FedMLTDI
43
193
0
14 Sep 2020
Quality Inference in Federated Learning with Secure Aggregation
Quality Inference in Federated Learning with Secure Aggregation
Balázs Pejó
G. Biczók
FedML
66
21
0
13 Jul 2020
Federated Learning: Challenges, Methods, and Future Directions
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
123
4,517
0
21 Aug 2019
Deep Leakage from Gradients
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
97
2,207
0
21 Jun 2019
Together or Alone: The Price of Privacy in Collaborative Learning
Together or Alone: The Price of Privacy in Collaborative Learning
Balázs Pejó
Qiang Tang
G. Biczók
FedML
54
16
0
01 Dec 2017
Knock Knock, Who's There? Membership Inference on Aggregate Location
  Data
Knock Knock, Who's There? Membership Inference on Aggregate Location Data
Apostolos Pyrgelis
Carmela Troncoso
Emiliano De Cristofaro
MIACV
111
270
0
21 Aug 2017
Membership Inference Attacks against Machine Learning Models
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLRMIALMMIACV
261
4,135
0
18 Oct 2016
Stealing Machine Learning Models via Prediction APIs
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILMMLAU
107
1,807
0
09 Sep 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,486
0
17 Feb 2016
Multi-task Neural Networks for QSAR Predictions
Multi-task Neural Networks for QSAR Predictions
George E. Dahl
Navdeep Jaitly
Ruslan Salakhutdinov
113
277
0
04 Jun 2014
1