ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.08649
  4. Cited By
Loss Minimization through the Lens of Outcome Indistinguishability

Loss Minimization through the Lens of Outcome Indistinguishability

16 October 2022
Parikshit Gopalan
Lunjia Hu
Michael P. Kim
Omer Reingold
Udi Wieder
    UQCV
ArXivPDFHTML

Papers citing "Loss Minimization through the Lens of Outcome Indistinguishability"

28 / 28 papers shown
Title
Three Types of Calibration with Properties and their Semantic and Formal Relationships
Three Types of Calibration with Properties and their Semantic and Formal Relationships
Rabanus Derr
Jessie Finocchiaro
Robert C. Williamson
38
0
0
25 Apr 2025
Dimension-Free Decision Calibration for Nonlinear Loss Functions
Dimension-Free Decision Calibration for Nonlinear Loss Functions
Jingwu Tang
Jiayun Wu
Zhiwei Steven Wu
Jiahao Zhang
35
0
0
22 Apr 2025
How Global Calibration Strengthens Multiaccuracy
How Global Calibration Strengthens Multiaccuracy
Sílvia Casacuberta
Parikshit Gopalan
Varun Kanade
Omer Reingold
32
0
0
21 Apr 2025
Revisiting the Predictability of Performative, Social Events
Revisiting the Predictability of Performative, Social Events
Juan C. Perdomo
41
1
0
12 Mar 2025
When does a predictor know its own loss?
When does a predictor know its own loss?
Aravind Gollakota
Parikshit Gopalan
Aayush Karan
Charlotte Peale
Udi Wieder
UQCV
FaML
67
0
0
27 Feb 2025
When is Multicalibration Post-Processing Necessary?
When is Multicalibration Post-Processing Necessary?
Dutch Hansen
Siddartha Devic
Preetum Nakkiran
Vatsal Sharan
43
4
0
10 Jun 2024
Optimal Multiclass U-Calibration Error and Beyond
Optimal Multiclass U-Calibration Error and Beyond
Haipeng Luo
Spandan Senapati
Vatsal Sharan
29
4
0
28 May 2024
Multigroup Robustness
Multigroup Robustness
Lunjia Hu
Charlotte Peale
Judy Hanwen Shen
OOD
38
1
0
01 May 2024
Predict to Minimize Swap Regret for All Payoff-Bounded Tasks
Predict to Minimize Swap Regret for All Payoff-Bounded Tasks
Lunjia Hu
Yifan Wu
40
3
0
21 Apr 2024
Multicalibration for Confidence Scoring in LLMs
Multicalibration for Confidence Scoring in LLMs
Gianluca Detommaso
Martín Bertrán
Riccardo Fogliato
Aaron Roth
29
12
0
06 Apr 2024
Forecasting for Swap Regret for All Downstream Agents
Forecasting for Swap Regret for All Downstream Agents
Aaron Roth
Mirah Shi
27
10
0
13 Feb 2024
On Computationally Efficient Multi-Class Calibration
On Computationally Efficient Multi-Class Calibration
Parikshit Gopalan
Lunjia Hu
G. Rothblum
12
6
0
12 Feb 2024
Omnipredictors for Regression and the Approximate Rank of Convex
  Functions
Omnipredictors for Regression and the Approximate Rank of Convex Functions
Parikshit Gopalan
Princewill Okoroafor
Prasad Raghavendra
Abhishek Shetty
Mihir Singhal
43
6
0
26 Jan 2024
Oracle Efficient Algorithms for Groupwise Regret
Oracle Efficient Algorithms for Groupwise Regret
Krishna Acharya
Eshwar Ram Arunachaleswaran
Sampath Kannan
Aaron Roth
Juba Ziani
AI4TS
42
2
0
07 Oct 2023
Oracle Efficient Online Multicalibration and Omniprediction
Oracle Efficient Online Multicalibration and Omniprediction
Sumegha Garg
Christopher Jung
Omer Reingold
Aaron Roth
23
18
0
18 Jul 2023
U-Calibration: Forecasting for an Unknown Agent
U-Calibration: Forecasting for an Unknown Agent
Robert D. Kleinberg
R. Leme
Jon Schneider
Yifeng Teng
AI4TS
29
20
0
30 Jun 2023
Agnostically Learning Single-Index Models using Omnipredictors
Agnostically Learning Single-Index Models using Omnipredictors
Aravind Gollakota
Parikshit Gopalan
Adam R. Klivans
Konstantinos Stavropoulos
26
10
0
18 Jun 2023
When Does Optimizing a Proper Loss Yield Calibration?
When Does Optimizing a Proper Loss Yield Calibration?
Jarosław Błasiok
Parikshit Gopalan
Lunjia Hu
Preetum Nakkiran
36
23
0
30 May 2023
Loss Minimization Yields Multicalibration for Large Neural Networks
Loss Minimization Yields Multicalibration for Large Neural Networks
Jarosław Błasiok
Parikshit Gopalan
Lunjia Hu
Adam Tauman Kalai
Preetum Nakkiran
FaML
UQCV
43
10
0
19 Apr 2023
Agnostic Multi-Robust Learning Using ERM
Agnostic Multi-Robust Learning Using ERM
Saba Ahmadi
Avrim Blum
Omar Montasser
Kevin Stangl
AAML
OOD
36
0
0
15 Mar 2023
Generative Models of Huge Objects
Generative Models of Huge Objects
Lunjia Hu
Inbal Livni-Navon
Omer Reingold
34
1
0
24 Feb 2023
Swap Agnostic Learning, or Characterizing Omniprediction via
  Multicalibration
Swap Agnostic Learning, or Characterizing Omniprediction via Multicalibration
Parikshit Gopalan
Michael P. Kim
Omer Reingold
20
15
0
13 Feb 2023
From Pseudorandomness to Multi-Group Fairness and Back
From Pseudorandomness to Multi-Group Fairness and Back
Cynthia Dwork
Daniel Lee
Huijia Lin
Pranay Tankala
FaML
22
9
0
21 Jan 2023
A Unifying Theory of Distance from Calibration
A Unifying Theory of Distance from Calibration
Jarosław Błasiok
Parikshit Gopalan
Lunjia Hu
Preetum Nakkiran
31
32
0
30 Nov 2022
Comparative Learning: A Sample Complexity Theory for Two Hypothesis
  Classes
Comparative Learning: A Sample Complexity Theory for Two Hypothesis Classes
Lunjia Hu
Charlotte Peale
43
6
0
16 Nov 2022
Making Decisions under Outcome Performativity
Making Decisions under Outcome Performativity
Michael P. Kim
Juan C. Perdomo
46
20
0
04 Oct 2022
Omnipredictors for Constrained Optimization
Omnipredictors for Constrained Optimization
Lunjia Hu
Inbal Livni-Navon
Omer Reingold
Chutong Yang
23
14
0
15 Sep 2022
Patterns, predictions, and actions: A story about machine learning
Patterns, predictions, and actions: A story about machine learning
Moritz Hardt
Benjamin Recht
SSL
AI4TS
AI4CE
44
31
0
10 Feb 2021
1