Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.08643
Cited By
A General Framework for Auditing Differentially Private Machine Learning
16 October 2022
Fred Lu
Joseph Munoz
Maya Fuchs
Tyler LeBlond
Elliott Zaresky-Williams
Edward Raff
Francis Ferraro
Brian Testa
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A General Framework for Auditing Differentially Private Machine Learning"
27 / 27 papers shown
Title
MCMC for Bayesian estimation of Differential Privacy from Membership Inference Attacks
Ceren Yildirim
Kamer Kaya
Sinan Yildirim
Erkay Savas
31
0
0
23 Apr 2025
Stop Walking in Circles! Bailing Out Early in Projected Gradient Descent
Philip Doldo
Derek Everett
Amol Khanna
A. Nguyen
Edward Raff
AAML
46
0
0
25 Mar 2025
Curator Attack: When Blackbox Differential Privacy Auditing Loses Its Power
Shiming Wang
Liyao Xiang
Bowei Cheng
Zhe Ji
Tianran Sun
Xinbing Wang
69
0
0
25 Nov 2024
Position: Challenges and Opportunities for Differential Privacy in the U.S. Federal Government
Amol Khanna
Adam McCormick
A. Nguyen
Chris Aguirre
Edward Raff
26
0
0
21 Oct 2024
VFLGAN-TS: Vertical Federated Learning-based Generative Adversarial Networks for Publication of Vertically Partitioned Time-Series Data
Xun Yuan
Zilong Zhao
P. Gope
Biplab Sikdar
AI4TS
25
1
0
05 Sep 2024
High-Dimensional Distributed Sparse Classification with Scalable Communication-Efficient Global Updates
Fred Lu
Ryan R. Curtin
Edward Raff
Francis Ferraro
James Holt
18
1
0
08 Jul 2024
Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model
Tudor Cebere
A. Bellet
Nicolas Papernot
30
9
0
23 May 2024
VFLGAN: Vertical Federated Learning-based Generative Adversarial Network for Vertically Partitioned Data Publication
Xun Yuan
Yang Yang
P. Gope
A. Pasikhani
Biplab Sikdar
29
2
0
15 Apr 2024
Revisiting Differentially Private Hyper-parameter Tuning
Zihang Xiang
Tianhao Wang
Cheng-Long Wang
Di Wang
34
6
0
20 Feb 2024
Auditing Private Prediction
Karan Chadha
Matthew Jagielski
Nicolas Papernot
Christopher A. Choquette-Choo
Milad Nasr
30
4
0
14 Feb 2024
PANORAMIA: Privacy Auditing of Machine Learning Models without Retraining
Mishaal Kazmi
H. Lautraite
Alireza Akbari
Mauricio Soroco
Qiaoyue Tang
Tao Wang
Sébastien Gambs
Mathias Lécuyer
34
8
0
12 Feb 2024
PrivLM-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models
Haoran Li
Dadi Guo
Donghao Li
Wei Fan
Qi Hu
Xin Liu
Chunkit Chan
Duanyi Yao
Yuan Yao
Yangqiu Song
PILM
29
24
0
07 Nov 2023
Scaling Up Differentially Private LASSO Regularized Logistic Regression via Faster Frank-Wolfe Iterations
Edward Raff
Amol Khanna
Fred Lu
15
6
0
30 Oct 2023
Revealing the True Cost of Locally Differentially Private Protocols: An Auditing Perspective
Héber H. Arcolezi
Sébastien Gambs
32
1
0
04 Sep 2023
Epsilon*: Privacy Metric for Machine Learning Models
Diana M. Negoescu
H. González
Saad Eddin Al Orjany
Jilei Yang
Yuliia Lut
...
Xinyi Zheng
Zachariah Douglas
Vidita Nolkha
P. Ahammad
G. Samorodnitsky
28
2
0
21 Jul 2023
DP-Auditorium: a Large Scale Library for Auditing Differential Privacy
William Kong
Andrés Munoz Medina
Mónica Ribero
Umar Syed
24
2
0
10 Jul 2023
Probing the Transition to Dataset-Level Privacy in ML Models Using an Output-Specific and Data-Resolved Privacy Profile
Tyler LeBlond
Joseph Munoz
Fred Lu
Maya Fuchs
Elliott Zaresky-Williams
Edward Raff
Brian Testa
14
3
0
27 Jun 2023
A Note On Interpreting Canary Exposure
Matthew Jagielski
16
4
0
31 May 2023
Unleashing the Power of Randomization in Auditing Differentially Private ML
Krishna Pillutla
Galen Andrew
Peter Kairouz
H. B. McMahan
Alina Oprea
Sewoong Oh
30
20
0
29 May 2023
Privacy Auditing with One (1) Training Run
Thomas Steinke
Milad Nasr
Matthew Jagielski
33
76
0
15 May 2023
A Randomized Approach for Tight Privacy Accounting
Jiachen T. Wang
Saeed Mahloujifar
Tong Wu
R. Jia
Prateek Mittal
28
9
0
17 Apr 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
Tight Auditing of Differentially Private Machine Learning
Milad Nasr
Jamie Hayes
Thomas Steinke
Borja Balle
Florian Tramèr
Matthew Jagielski
Nicholas Carlini
Andreas Terzis
FedML
30
52
0
15 Feb 2023
One-shot Empirical Privacy Estimation for Federated Learning
Galen Andrew
Peter Kairouz
Sewoong Oh
Alina Oprea
H. B. McMahan
Vinith M. Suriyakumar
FedML
21
32
0
06 Feb 2023
Bayesian Estimation of Differential Privacy
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
A. Salem
Victor Rühle
Andrew J. Paverd
Mohammad Naseri
Boris Köpf
Daniel Jones
6
36
0
10 Jun 2022
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
152
349
0
25 Sep 2021
Bounding Information Leakage in Machine Learning
Ganesh Del Grosso
Georg Pichler
C. Palamidessi
Pablo Piantanida
MIACV
FedML
40
10
0
09 May 2021
1