ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.08443
  4. Cited By
CLEAR: Generative Counterfactual Explanations on Graphs

CLEAR: Generative Counterfactual Explanations on Graphs

16 October 2022
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
    CML
    OOD
ArXivPDFHTML

Papers citing "CLEAR: Generative Counterfactual Explanations on Graphs"

39 / 39 papers shown
Title
Recent Advances in Malware Detection: Graph Learning and Explainability
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
68
2
0
14 Feb 2025
Graph Counterfactual Explainable AI via Latent Space Traversal
Graph Counterfactual Explainable AI via Latent Space Traversal
Andreas Abildtrup Hansen
Paraskevas Pegios
Anna Calissano
Aasa Feragen
OOD
BDL
AAML
81
0
0
15 Jan 2025
Global Graph Counterfactual Explanation: A Subgraph Mapping Approach
Global Graph Counterfactual Explanation: A Subgraph Mapping Approach
Yinhan He
Wendy Zheng
Yaochen Zhu
Jing Ma
Saumitra Mishra
Natraj Raman
Ninghao Liu
Jundong Li
26
0
0
25 Oct 2024
Explaining Graph Neural Networks with Large Language Models: A
  Counterfactual Perspective for Molecular Property Prediction
Explaining Graph Neural Networks with Large Language Models: A Counterfactual Perspective for Molecular Property Prediction
Yinhan He
Zaiyi Zheng
Patrick Soga
Yaozhen Zhu
Yushun Dong
Jundong Li
19
1
0
19 Oct 2024
Explanation-Preserving Augmentation for Semi-Supervised Graph
  Representation Learning
Explanation-Preserving Augmentation for Semi-Supervised Graph Representation Learning
Zhuomin Chen
Jingchao Ni
Hojat Allah Salehi
Xu Zheng
Esteban Schafir
Farhad Shirani
Dongsheng Luo
24
0
0
16 Oct 2024
Causal Inference with Latent Variables: Recent Advances and Future
  Prospectives
Causal Inference with Latent Variables: Recent Advances and Future Prospectives
Yaochen Zhu
Yinhan He
Jing Ma
Mengxuan Hu
Sheng R. Li
Jundong Li
CML
43
3
0
20 Jun 2024
Global Human-guided Counterfactual Explanations for Molecular Properties
  via Reinforcement Learning
Global Human-guided Counterfactual Explanations for Molecular Properties via Reinforcement Learning
Danqing Wang
Antonis Antoniades
Kha-Dinh Luong
Edwin Zhang
Mert Kosan
Jiachen Li
Ambuj Singh
William Yang Wang
Lei Li
AI4CE
20
0
0
19 Jun 2024
How Interpretable Are Interpretable Graph Neural Networks?
How Interpretable Are Interpretable Graph Neural Networks?
Yongqiang Chen
Yatao Bian
Bo Han
James Cheng
44
4
0
12 Jun 2024
LLM-Generated Black-box Explanations Can Be Adversarially Helpful
LLM-Generated Black-box Explanations Can Be Adversarially Helpful
R. Ajwani
Shashidhar Reddy Javaji
Frank Rudzicz
Zining Zhu
AAML
32
6
0
10 May 2024
Graph Neural Networks for Vulnerability Detection: A Counterfactual
  Explanation
Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation
Zhaoyang Chu
Yao Wan
Qian Li
Yang Wu
Hongyu Zhang
Yulei Sui
Guandong Xu
Hai Jin
AAML
36
9
0
24 Apr 2024
CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for
  Spatiotemporal Time Series Imputation
CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation
Baoyu Jing
Dawei Zhou
Kan Ren
Carl Yang
CML
AI4TS
32
6
0
18 Mar 2024
Towards Non-Adversarial Algorithmic Recourse
Towards Non-Adversarial Algorithmic Recourse
Tobias Leemann
Martin Pawelczyk
Bardh Prenkaj
Gjergji Kasneci
AAML
26
1
0
15 Mar 2024
Fast Inference of Removal-Based Node Influence
Fast Inference of Removal-Based Node Influence
Weikai Li
Zhiping Xiao
Xiao Luo
Yizhou Sun
AAML
28
1
0
13 Mar 2024
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
J. Duell
M. Seisenberger
Hsuan-Wei Fu
Xiuyi Fan
UQCV
BDL
32
1
0
27 Feb 2024
Game-theoretic Counterfactual Explanation for Graph Neural Networks
Game-theoretic Counterfactual Explanation for Graph Neural Networks
Chirag Chhablani
Sarthak Jain
Akshay Channesh
Ian A. Kash
Sourav Medya
33
6
0
08 Feb 2024
PAC Learnability under Explanation-Preserving Graph Perturbations
PAC Learnability under Explanation-Preserving Graph Perturbations
Xu Zheng
Farhad Shirani
Tianchun Wang
Shouwei Gao
Wenqian Dong
Wei Cheng
Dongsheng Luo
22
0
0
07 Feb 2024
PowerGraph: A power grid benchmark dataset for graph neural networks
PowerGraph: A power grid benchmark dataset for graph neural networks
Anna Varbella
Kenza Amara
B. Gjorgiev
Mennatallah El-Assady
G. Sansavini
18
5
0
05 Feb 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
36
2
0
19 Dec 2023
Robust Stochastic Graph Generator for Counterfactual Explanations
Robust Stochastic Graph Generator for Counterfactual Explanations
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
CML
6
3
0
18 Dec 2023
Factorized Explainer for Graph Neural Networks
Factorized Explainer for Graph Neural Networks
Rundong Huang
Farhad Shirani
Dongsheng Luo
37
8
0
09 Dec 2023
Exploring Causal Learning through Graph Neural Networks: An In-depth
  Review
Exploring Causal Learning through Graph Neural Networks: An In-depth Review
Simi Job
Xiaohui Tao
Taotao Cai
Haoran Xie
Lin Li
Jianming Yong
Qing Li
CML
AI4CE
24
5
0
25 Nov 2023
Generative Explanations for Graph Neural Network: Methods and
  Evaluations
Generative Explanations for Graph Neural Network: Methods and Evaluations
Jialin Chen
Kenza Amara
Junchi Yu
Rex Ying
37
3
0
09 Nov 2023
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising
  Diffusion
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
Jialin Chen
Shirley Wu
Abhijit Gupta
Rex Ying
DiffM
34
4
0
30 Oct 2023
Graph AI in Medicine
Graph AI in Medicine
Ruth Johnson
Michelle M. Li
Ayush Noori
Owen Queen
Marinka Zitnik
21
3
0
20 Oct 2023
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
BDL
26
4
0
11 Oct 2023
Towards Robust Fidelity for Evaluating Explainability of Graph Neural
  Networks
Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks
Xu Zheng
Farhad Shirani
Tianchun Wang
Wei Cheng
Zhuomin Chen
Haifeng Chen
Hua Wei
Dongsheng Luo
27
11
0
03 Oct 2023
GNNX-BENCH: Unravelling the Utility of Perturbation-based GNN Explainers
  through In-depth Benchmarking
GNNX-BENCH: Unravelling the Utility of Perturbation-based GNN Explainers through In-depth Benchmarking
Mert Kosan
S. Verma
Burouj Armgaan
Khushbu Pahwa
Ambuj K. Singh
Sourav Medya
Sayan Ranu
27
13
0
03 Oct 2023
GInX-Eval: Towards In-Distribution Evaluation of Graph Neural Network
  Explanations
GInX-Eval: Towards In-Distribution Evaluation of Graph Neural Network Explanations
Kenza Amara
Mennatallah El-Assady
Rex Ying
28
6
0
28 Sep 2023
Adapting to Change: Robust Counterfactual Explanations in Dynamic Data
  Landscapes
Adapting to Change: Robust Counterfactual Explanations in Dynamic Data Landscapes
Bardh Prenkaj
Mario Villaizán-Vallelado
Tobias Leemann
Gjergji Kasneci
26
2
0
04 Aug 2023
A Survey on Explainability of Graph Neural Networks
A Survey on Explainability of Graph Neural Networks
Jaykumar Kakkad
Jaspal Jannu
Kartik Sharma
Charu C. Aggarwal
Sourav Medya
28
23
0
02 Jun 2023
Unstructured and structured data: Can we have the best of both worlds
  with large language models?
Unstructured and structured data: Can we have the best of both worlds with large language models?
W. Tan
11
1
0
25 Apr 2023
Counterfactual Learning on Graphs: A Survey
Counterfactual Learning on Graphs: A Survey
Zhimeng Guo
Teng Xiao
Zongyu Wu
Charu C. Aggarwal
Hui Liu
Suhang Wang
CML
AI4CE
38
18
0
03 Apr 2023
Efficient XAI Techniques: A Taxonomic Survey
Efficient XAI Techniques: A Taxonomic Survey
Yu-Neng Chuang
Guanchu Wang
Fan Yang
Zirui Liu
Xuanting Cai
Mengnan Du
Xia Hu
13
31
0
07 Feb 2023
A Survey on Graph Counterfactual Explanations: Definitions, Methods,
  Evaluation, and Research Challenges
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
27
30
0
21 Oct 2022
FlowX: Towards Explainable Graph Neural Networks via Message Flows
FlowX: Towards Explainable Graph Neural Networks via Message Flows
Shurui Gui
Hao Yuan
Jie Wang
Qicheng Lao
Kang Li
Shuiwang Ji
28
11
0
26 Jun 2022
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
110
142
0
05 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
167
591
0
31 Dec 2020
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
221
1,337
0
12 Feb 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
166
1,775
0
02 Mar 2017
1