Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.08443
Cited By
CLEAR: Generative Counterfactual Explanations on Graphs
16 October 2022
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CLEAR: Generative Counterfactual Explanations on Graphs"
39 / 39 papers shown
Title
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
68
2
0
14 Feb 2025
Graph Counterfactual Explainable AI via Latent Space Traversal
Andreas Abildtrup Hansen
Paraskevas Pegios
Anna Calissano
Aasa Feragen
OOD
BDL
AAML
81
0
0
15 Jan 2025
Global Graph Counterfactual Explanation: A Subgraph Mapping Approach
Yinhan He
Wendy Zheng
Yaochen Zhu
Jing Ma
Saumitra Mishra
Natraj Raman
Ninghao Liu
Jundong Li
26
0
0
25 Oct 2024
Explaining Graph Neural Networks with Large Language Models: A Counterfactual Perspective for Molecular Property Prediction
Yinhan He
Zaiyi Zheng
Patrick Soga
Yaozhen Zhu
Yushun Dong
Jundong Li
19
1
0
19 Oct 2024
Explanation-Preserving Augmentation for Semi-Supervised Graph Representation Learning
Zhuomin Chen
Jingchao Ni
Hojat Allah Salehi
Xu Zheng
Esteban Schafir
Farhad Shirani
Dongsheng Luo
24
0
0
16 Oct 2024
Causal Inference with Latent Variables: Recent Advances and Future Prospectives
Yaochen Zhu
Yinhan He
Jing Ma
Mengxuan Hu
Sheng R. Li
Jundong Li
CML
43
3
0
20 Jun 2024
Global Human-guided Counterfactual Explanations for Molecular Properties via Reinforcement Learning
Danqing Wang
Antonis Antoniades
Kha-Dinh Luong
Edwin Zhang
Mert Kosan
Jiachen Li
Ambuj Singh
William Yang Wang
Lei Li
AI4CE
20
0
0
19 Jun 2024
How Interpretable Are Interpretable Graph Neural Networks?
Yongqiang Chen
Yatao Bian
Bo Han
James Cheng
44
4
0
12 Jun 2024
LLM-Generated Black-box Explanations Can Be Adversarially Helpful
R. Ajwani
Shashidhar Reddy Javaji
Frank Rudzicz
Zining Zhu
AAML
32
6
0
10 May 2024
Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation
Zhaoyang Chu
Yao Wan
Qian Li
Yang Wu
Hongyu Zhang
Yulei Sui
Guandong Xu
Hai Jin
AAML
36
9
0
24 Apr 2024
CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation
Baoyu Jing
Dawei Zhou
Kan Ren
Carl Yang
CML
AI4TS
32
6
0
18 Mar 2024
Towards Non-Adversarial Algorithmic Recourse
Tobias Leemann
Martin Pawelczyk
Bardh Prenkaj
Gjergji Kasneci
AAML
26
1
0
15 Mar 2024
Fast Inference of Removal-Based Node Influence
Weikai Li
Zhiping Xiao
Xiao Luo
Yizhou Sun
AAML
28
1
0
13 Mar 2024
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations
J. Duell
M. Seisenberger
Hsuan-Wei Fu
Xiuyi Fan
UQCV
BDL
32
1
0
27 Feb 2024
Game-theoretic Counterfactual Explanation for Graph Neural Networks
Chirag Chhablani
Sarthak Jain
Akshay Channesh
Ian A. Kash
Sourav Medya
33
6
0
08 Feb 2024
PAC Learnability under Explanation-Preserving Graph Perturbations
Xu Zheng
Farhad Shirani
Tianchun Wang
Shouwei Gao
Wenqian Dong
Wei Cheng
Dongsheng Luo
22
0
0
07 Feb 2024
PowerGraph: A power grid benchmark dataset for graph neural networks
Anna Varbella
Kenza Amara
B. Gjorgiev
Mennatallah El-Assady
G. Sansavini
18
5
0
05 Feb 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
36
2
0
19 Dec 2023
Robust Stochastic Graph Generator for Counterfactual Explanations
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
CML
6
3
0
18 Dec 2023
Factorized Explainer for Graph Neural Networks
Rundong Huang
Farhad Shirani
Dongsheng Luo
37
8
0
09 Dec 2023
Exploring Causal Learning through Graph Neural Networks: An In-depth Review
Simi Job
Xiaohui Tao
Taotao Cai
Haoran Xie
Lin Li
Jianming Yong
Qing Li
CML
AI4CE
24
5
0
25 Nov 2023
Generative Explanations for Graph Neural Network: Methods and Evaluations
Jialin Chen
Kenza Amara
Junchi Yu
Rex Ying
37
3
0
09 Nov 2023
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
Jialin Chen
Shirley Wu
Abhijit Gupta
Rex Ying
DiffM
34
4
0
30 Oct 2023
Graph AI in Medicine
Ruth Johnson
Michelle M. Li
Ayush Noori
Owen Queen
Marinka Zitnik
21
3
0
20 Oct 2023
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
BDL
26
4
0
11 Oct 2023
Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks
Xu Zheng
Farhad Shirani
Tianchun Wang
Wei Cheng
Zhuomin Chen
Haifeng Chen
Hua Wei
Dongsheng Luo
27
11
0
03 Oct 2023
GNNX-BENCH: Unravelling the Utility of Perturbation-based GNN Explainers through In-depth Benchmarking
Mert Kosan
S. Verma
Burouj Armgaan
Khushbu Pahwa
Ambuj K. Singh
Sourav Medya
Sayan Ranu
27
13
0
03 Oct 2023
GInX-Eval: Towards In-Distribution Evaluation of Graph Neural Network Explanations
Kenza Amara
Mennatallah El-Assady
Rex Ying
28
6
0
28 Sep 2023
Adapting to Change: Robust Counterfactual Explanations in Dynamic Data Landscapes
Bardh Prenkaj
Mario Villaizán-Vallelado
Tobias Leemann
Gjergji Kasneci
26
2
0
04 Aug 2023
A Survey on Explainability of Graph Neural Networks
Jaykumar Kakkad
Jaspal Jannu
Kartik Sharma
Charu C. Aggarwal
Sourav Medya
28
23
0
02 Jun 2023
Unstructured and structured data: Can we have the best of both worlds with large language models?
W. Tan
11
1
0
25 Apr 2023
Counterfactual Learning on Graphs: A Survey
Zhimeng Guo
Teng Xiao
Zongyu Wu
Charu C. Aggarwal
Hui Liu
Suhang Wang
CML
AI4CE
38
18
0
03 Apr 2023
Efficient XAI Techniques: A Taxonomic Survey
Yu-Neng Chuang
Guanchu Wang
Fan Yang
Zirui Liu
Xuanting Cai
Mengnan Du
Xia Hu
13
31
0
07 Feb 2023
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
27
30
0
21 Oct 2022
FlowX: Towards Explainable Graph Neural Networks via Message Flows
Shurui Gui
Hao Yuan
Jie Wang
Qicheng Lao
Kang Li
Shuiwang Ji
28
11
0
26 Jun 2022
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
110
142
0
05 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
167
591
0
31 Dec 2020
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
221
1,337
0
12 Feb 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
166
1,775
0
02 Mar 2017
1