ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.08277
  4. Cited By
Deep Differentiable Logic Gate Networks

Deep Differentiable Logic Gate Networks

15 October 2022
Felix Petersen
Christian Borgelt
Hilde Kuehne
Oliver Deussen
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Deep Differentiable Logic Gate Networks"

35 / 35 papers shown
Title
Differentiable Weightless Neural Networks
Differentiable Weightless Neural Networks
Alan T. L. Bacellar
Zachary Susskind
Mauricio Breternitz Jr.
E. John
L. John
P. Lima
F. M. G. França
106
7
0
14 Oct 2024
Learning with Differentiable Algorithms
Learning with Differentiable Algorithms
Felix Petersen
OOD
47
11
0
01 Sep 2022
GenDR: A Generalized Differentiable Renderer
GenDR: A Generalized Differentiable Renderer
Felix Petersen
Bastian Goldluecke
Christian Borgelt
Oliver Deussen
86
17
0
29 Apr 2022
Monotonic Differentiable Sorting Networks
Monotonic Differentiable Sorting Networks
Felix Petersen
Christian Borgelt
Hilde Kuehne
Oliver Deussen
63
26
0
17 Mar 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most
  Naive Baseline for Sparse Training
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training
Shiwei Liu
Tianlong Chen
Xiaohan Chen
Li Shen
Decebal Constantin Mocanu
Zhangyang Wang
Mykola Pechenizkiy
83
113
0
05 Feb 2022
Learning with Algorithmic Supervision via Continuous Relaxations
Learning with Algorithmic Supervision via Continuous Relaxations
Felix Petersen
Christian Borgelt
Hilde Kuehne
Oliver Deussen
CLL
83
27
0
11 Oct 2021
Differentiable Sorting Networks for Scalable Sorting and Ranking
  Supervision
Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision
Felix Petersen
Christian Borgelt
Hilde Kuehne
Oliver Deussen
88
30
0
09 May 2021
Effective Sparsification of Neural Networks with Global Sparsity
  Constraint
Effective Sparsification of Neural Networks with Global Sparsity Constraint
Xiao Zhou
Weizhong Zhang
Hang Xu
Tong Zhang
150
63
0
03 May 2021
Differentiable Logic Machines
Differentiable Logic Machines
Matthieu Zimmer
Xuening Feng
Claire Glanois
Zhaohui Jiang
Jianyi Zhang
Paul Weng
Li Dong
Hao Jianye
Liu Wulong
AI4CE
62
23
0
23 Feb 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
316
725
0
31 Jan 2021
Learning Symbolic Expressions via Gumbel-Max Equation Learner Networks
Learning Symbolic Expressions via Gumbel-Max Equation Learner Networks
Gang Chen
40
8
0
12 Dec 2020
Learning Binary Decision Trees by Argmin Differentiation
Learning Binary Decision Trees by Argmin Differentiation
Valentina Zantedeschi
Matt J. Kusner
Vlad Niculae
55
13
0
09 Oct 2020
Binary Neural Networks: A Survey
Binary Neural Networks: A Survey
Haotong Qin
Ruihao Gong
Xianglong Liu
Xiao Bai
Jingkuan Song
N. Sebe
MQ
132
471
0
31 Mar 2020
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
280
1,054
0
06 Mar 2020
Learning with Differentiable Perturbed Optimizers
Learning with Differentiable Perturbed Optimizers
Quentin Berthet
Mathieu Blondel
O. Teboul
Marco Cuturi
Jean-Philippe Vert
Francis R. Bach
86
109
0
20 Feb 2020
Analyzing Differentiable Fuzzy Logic Operators
Analyzing Differentiable Fuzzy Logic Operators
Emile van Krieken
Erman Acar
F. V. Harmelen
NAIAI4CE
109
136
0
14 Feb 2020
Making Logic Learnable With Neural Networks
Making Logic Learnable With Neural Networks
Tobias Brudermueller
Dennis L. Shung
A. Stanley
Johannes Stegmaier
Smita Krishnaswamy
NAI
39
2
0
10 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
556
42,639
0
03 Dec 2019
Machine Learning at the Network Edge: A Survey
Machine Learning at the Network Edge: A Survey
M. G. Sarwar Murshed
Chris Murphy
Daqing Hou
Nazar Khan
Ganesh Ananthanarayanan
Faraz Hussain
62
384
0
31 Jul 2019
Weight Agnostic Neural Networks
Weight Agnostic Neural Networks
Adam Gaier
David R Ha
OOD
67
242
0
11 Jun 2019
Differentiable Ranks and Sorting using Optimal Transport
Differentiable Ranks and Sorting using Optimal Transport
Marco Cuturi
O. Teboul
Jean-Philippe Vert
OT
86
159
0
28 May 2019
A Standalone FPGA-based Miner for Lyra2REv2 Cryptocurrencies
A Standalone FPGA-based Miner for Lyra2REv2 Cryptocurrencies
J. Têtu
Louis-Charles Trudeau
Michiel Van Beirendonck
Alexios Balatsoukas-Stimming
P. Giard
42
9
0
21 May 2019
PruneTrain: Fast Neural Network Training by Dynamic Sparse Model
  Reconfiguration
PruneTrain: Fast Neural Network Training by Dynamic Sparse Model Reconfiguration
Sangkug Lym
Esha Choukse
Siavash Zangeneh
W. Wen
Sujay Sanghavi
M. Erez
CVBM
51
87
0
26 Jan 2019
PACT: Parameterized Clipping Activation for Quantized Neural Networks
PACT: Parameterized Clipping Activation for Quantized Neural Networks
Jungwook Choi
Zhuo Wang
Swagath Venkataramani
P. Chuang
Vijayalakshmi Srinivasan
K. Gopalakrishnan
MQ
75
955
0
16 May 2018
Learning Sparse Neural Networks through $L_0$ Regularization
Learning Sparse Neural Networks through L0L_0L0​ Regularization
Christos Louizos
Max Welling
Diederik P. Kingma
439
1,148
0
04 Dec 2017
Scalable Training of Artificial Neural Networks with Adaptive Sparse
  Connectivity inspired by Network Science
Scalable Training of Artificial Neural Networks with Adaptive Sparse Connectivity inspired by Network Science
Decebal Constantin Mocanu
Elena Mocanu
Peter Stone
Phuong H. Nguyen
M. Gibescu
A. Liotta
182
637
0
15 Jul 2017
Soft-DTW: a Differentiable Loss Function for Time-Series
Soft-DTW: a Differentiable Loss Function for Time-Series
Marco Cuturi
Mathieu Blondel
AI4TS
183
628
0
05 Mar 2017
Variational Dropout Sparsifies Deep Neural Networks
Variational Dropout Sparsifies Deep Neural Networks
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
178
831
0
19 Jan 2017
FINN: A Framework for Fast, Scalable Binarized Neural Network Inference
FINN: A Framework for Fast, Scalable Binarized Neural Network Inference
Yaman Umuroglu
Nicholas J. Fraser
Giulio Gambardella
Michaela Blott
Philip H. W. Leong
Magnus Jahre
K. Vissers
MQ
104
996
0
01 Dec 2016
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
363
5,390
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
200
2,541
0
02 Nov 2016
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
263
8,862
0
01 Oct 2015
Deep Learning with Limited Numerical Precision
Deep Learning with Limited Numerical Precision
Suyog Gupta
A. Agrawal
K. Gopalakrishnan
P. Narayanan
HAI
207
2,049
0
09 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
A Knowledge Compilation Map
A Knowledge Compilation Map
Adnan Darwiche
Pierre Marquis
101
953
0
09 Jun 2011
1