Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.07893
Cited By
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
14 October 2022
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees"
19 / 19 papers shown
Title
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
55
20
0
05 Nov 2021
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
86
17
0
22 Sep 2021
Adaptive Inducing Points Selection For Gaussian Processes
Théo Galy-Fajou
Manfred Opper
60
16
0
21 Jul 2021
Numerical issues in maximum likelihood parameter estimation for Gaussian process interpolation
S. Basak
S. Petit
Julien Bect
E. Vázquez
35
14
0
24 Jan 2021
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
51
60
0
08 Nov 2020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
68
74
0
01 Aug 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
50
164
0
21 Feb 2020
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
47
153
0
08 Mar 2019
Banded Matrix Operators for Gaussian Markov Models in the Automatic Differentiation Era
N. Durrande
Vincent Adam
L. Bordeaux
Stefanos Eleftheriadis
J. Hensman
25
26
0
26 Feb 2019
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
123
1,095
0
28 Sep 2018
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GP
BDL
126
342
0
06 Jul 2018
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
A. Panos
P. Dellaportas
Michalis K. Titsias
39
12
0
06 Jul 2018
Spatial Mapping with Gaussian Processes and Nonstationary Fourier Features
Jean-François Ton
Seth Flaxman
Dino Sejdinovic
Samir Bhatt
GP
58
53
0
15 Nov 2017
A general framework for Vecchia approximations of Gaussian processes
Matthias Katzfuss
J. Guinness
42
258
0
21 Aug 2017
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
73
664
0
27 Oct 2016
A multi-resolution approximation for massive spatial datasets
Matthias Katzfuss
79
243
0
16 Jul 2015
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
76
192
0
27 Apr 2015
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
101
1,230
0
26 Sep 2013
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
333
7,923
0
13 Jun 2012
1