Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.07588
Cited By
v1
v2 (latest)
Distributed Distributionally Robust Optimization with Non-Convex Objectives
14 October 2022
Yang Jiao
Kai Yang
Dongjin Song
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Distributed Distributionally Robust Optimization with Non-Convex Objectives"
27 / 27 papers shown
Title
Cellular Traffic Prediction via Byzantine-robust Asynchronous Federated Learning
Hui Ma
Kai Yang
Yang Jiao
OOD
190
1
0
25 May 2025
Learning Distributionally Robust Models at Scale via Composite Optimization
Farzin Haddadpour
Mohammad Mahdi Kamani
M. Mahdavi
Amin Karbasi
OOD
51
5
0
17 Mar 2022
Asynchronous Stochastic Optimization Robust to Arbitrary Delays
Alon Cohen
Amit Daniely
Yoel Drori
Tomer Koren
Mariano Schain
77
33
0
22 Jun 2021
Distributionally Robust Federated Averaging
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
53
142
0
25 Feb 2021
Federated Reconstruction: Partially Local Federated Learning
K. Singhal
Hakim Sidahmed
Zachary Garrett
Shanshan Wu
Keith Rush
Sushant Prakash
FedML
67
143
0
05 Feb 2021
Curse or Redemption? How Data Heterogeneity Affects the Robustness of Federated Learning
Syed Zawad
Ahsan Ali
Pin-Yu Chen
Ali Anwar
Yi Zhou
Nathalie Baracaldo
Yuan Tian
Feng Yan
FedML
43
55
0
01 Feb 2021
Large-Scale Methods for Distributionally Robust Optimization
Daniel Levy
Y. Carmon
John C. Duchi
Aaron Sidford
78
217
0
12 Oct 2020
An Online Method for A Class of Distributionally Robust Optimization with Non-Convex Objectives
Qi Qi
Zhishuai Guo
Yi Tian Xu
Rong Jin
Tianbao Yang
85
47
0
17 Jun 2020
A Unified Single-loop Alternating Gradient Projection Algorithm for Nonconvex-Concave and Convex-Nonconcave Minimax Problems
Zi Xu
Hui-Li Zhang
Yang Xu
Guanghui Lan
85
100
0
03 Jun 2020
Robustness analytics to data heterogeneity in edge computing
Jia Qian
Lars Kai Hansen
Xenofon Fafoutis
Prayag Tiwari
Hari Mohan Pandey
FedML
41
4
0
12 Feb 2020
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
65
347
0
14 Oct 2019
Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients
Jun Sun
Tianyi Chen
G. Giannakis
Zaiyue Yang
64
95
0
17 Sep 2019
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
64
395
0
23 Aug 2019
Efficient Algorithms for Smooth Minimax Optimization
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
92
191
0
02 Jul 2019
On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems
Tianyi Lin
Chi Jin
Michael I. Jordan
126
508
0
02 Jun 2019
A backdoor attack against LSTM-based text classification systems
Jiazhu Dai
Chuanshuai Chen
SILM
83
329
0
29 May 2019
Hybrid Block Successive Approximation for One-Sided Non-Convex Min-Max Problems: Algorithms and Applications
Songtao Lu
Ioannis C. Tsaknakis
Mingyi Hong
Yongxin Chen
72
171
0
21 Feb 2019
Agnostic Federated Learning
M. Mohri
Gary Sivek
A. Suresh
FedML
136
937
0
01 Feb 2019
Learning Models with Uniform Performance via Distributionally Robust Optimization
John C. Duchi
Hongseok Namkoong
OOD
63
423
0
20 Oct 2018
How To Backdoor Federated Learning
Eugene Bagdasaryan
Andreas Veit
Yiqing Hua
D. Estrin
Vitaly Shmatikov
SILM
FedML
97
1,928
0
02 Jul 2018
Robust Optimization over Multiple Domains
Qi Qian
Shenghuo Zhu
Jiasheng Tang
Rong Jin
Baigui Sun
Hao Li
OOD
74
71
0
19 May 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,920
0
25 Aug 2017
Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline
Zhiguang Wang
Weizhong Yan
Tim Oates
AI4TS
71
1,658
0
20 Nov 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
249
3,224
0
15 Jun 2016
Quantifying Distributional Model Risk via Optimal Transport
Jose H. Blanchet
Karthyek Murthy
78
426
0
05 Apr 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,559
0
17 Feb 2016
Asynchronous Distributed ADMM for Large-Scale Optimization- Part I: Algorithm and Convergence Analysis
Tsung-Hui Chang
Mingyi Hong
Wei-Cheng Liao
Xiangfeng Wang
43
200
0
09 Sep 2015
1