Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.07147
Cited By
Global Explainability of GNNs via Logic Combination of Learned Concepts
13 October 2022
Steve Azzolin
Antonio Longa
Pietro Barbiero
Pietro Lio
Andrea Passerini
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Global Explainability of GNNs via Logic Combination of Learned Concepts"
31 / 31 papers shown
Title
MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Zhaoning Yu
Hongyang Gao
77
3
0
21 May 2024
Explaining the Explainers in Graph Neural Networks: a Comparative Study
Antonio Longa
Steve Azzolin
G. Santin
G. Cencetti
Pietro Lio
Bruno Lepri
Andrea Passerini
70
29
0
27 Oct 2022
Evaluating Explainability for Graph Neural Networks
Chirag Agarwal
Owen Queen
Himabindu Lakkaraju
Marinka Zitnik
74
104
0
19 Aug 2022
Encoding Concepts in Graph Neural Networks
Lucie Charlotte Magister
Pietro Barbiero
Dmitry Kazhdan
F. Siciliano
Gabriele Ciravegna
Fabrizio Silvestri
M. Jamnik
Pietro Lio
59
21
0
27 Jul 2022
OrphicX: A Causality-Inspired Latent Variable Model for Interpreting Graph Neural Networks
Wanyu Lin
Hao Lan
Hao Wang
Baochun Li
BDL
CML
51
51
0
29 Mar 2022
ProtGNN: Towards Self-Explaining Graph Neural Networks
Zaixin Zhang
Qi Liu
Hao Wang
Chengqiang Lu
Chee-Kong Lee
37
128
0
02 Dec 2021
Logic Explained Networks
Gabriele Ciravegna
Pietro Barbiero
Francesco Giannini
Marco Gori
Pietro Lio
Marco Maggini
S. Melacci
55
69
0
11 Aug 2021
GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph Neural Networks
Lucie Charlotte Magister
Dmitry Kazhdan
Vikash Singh
Pietro Lio
56
48
0
25 Jul 2021
Algorithmic Concept-based Explainable Reasoning
Dobrik Georgiev
Pietro Barbiero
Dmitry Kazhdan
Petar Velivcković
Pietro Lio
82
16
0
15 Jul 2021
Entropy-based Logic Explanations of Neural Networks
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
Pietro Lio
Marco Gori
S. Melacci
FAtt
XAI
44
78
0
12 Jun 2021
How Attentive are Graph Attention Networks?
Shaked Brody
Uri Alon
Eran Yahav
GNN
83
1,046
0
30 May 2021
Generative Causal Explanations for Graph Neural Networks
Wanyu Lin
Hao Lan
Baochun Li
CML
51
174
0
14 Apr 2021
On Explainability of Graph Neural Networks via Subgraph Explorations
Hao Yuan
Haiyang Yu
Jie Wang
Kang Li
Shuiwang Ji
FAtt
62
383
0
09 Feb 2021
GLocalX -- From Local to Global Explanations of Black Box AI Models
Mattia Setzu
Riccardo Guidotti
A. Monreale
Franco Turini
D. Pedreschi
F. Giannotti
39
119
0
19 Jan 2021
Parameterized Explainer for Graph Neural Network
Dongsheng Luo
Wei Cheng
Dongkuan Xu
Wenchao Yu
Bo Zong
Haifeng Chen
Xiang Zhang
123
546
0
09 Nov 2020
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks
Minh Nhat Vu
My T. Thai
BDL
50
330
0
12 Oct 2020
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
89
807
0
09 Jul 2020
XGNN: Towards Model-Level Explanations of Graph Neural Networks
Haonan Yuan
Jiliang Tang
Xia Hu
Shuiwang Ji
63
393
0
03 Jun 2020
GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks
Q. Huang
M. Yamada
Yuan Tian
Dinesh Singh
Dawei Yin
Yi-Ju Chang
FAtt
59
348
0
17 Jan 2020
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan O. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
176
302
0
17 Oct 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
111
1,300
0
10 Mar 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
175
7,554
0
01 Oct 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
177
1,172
0
27 Jun 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
164
1,828
0
30 Nov 2017
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu
M. C. Hughes
S. Parbhoo
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
AI4CE
114
281
0
16 Nov 2017
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
348
19,991
0
30 Oct 2017
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
Oscar Li
Hao Liu
Chaofan Chen
Cynthia Rudin
125
586
0
13 Oct 2017
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
403
15,066
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
300
7,388
0
04 Apr 2017
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
221
5,323
0
03 Nov 2016
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
485
28,901
0
09 Sep 2016
1