ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.06819
  4. Cited By
Mean-field analysis for heavy ball methods: Dropout-stability,
  connectivity, and global convergence

Mean-field analysis for heavy ball methods: Dropout-stability, connectivity, and global convergence

13 October 2022
Diyuan Wu
Vyacheslav Kungurtsev
Marco Mondelli
ArXivPDFHTML

Papers citing "Mean-field analysis for heavy ball methods: Dropout-stability, connectivity, and global convergence"

4 / 4 papers shown
Title
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
109
0
0
06 May 2025
Convex Analysis of the Mean Field Langevin Dynamics
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
61
64
0
25 Jan 2022
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning
  Dynamics
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
107
77
0
08 Dec 2020
A Differential Equation for Modeling Nesterov's Accelerated Gradient
  Method: Theory and Insights
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
108
1,154
0
04 Mar 2015
1