ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.06749
  4. Cited By
Reducing Annotation Effort by Identifying and Labeling Contextually
  Diverse Classes for Semantic Segmentation Under Domain Shift

Reducing Annotation Effort by Identifying and Labeling Contextually Diverse Classes for Semantic Segmentation Under Domain Shift

13 October 2022
Sharat Agarwal
Saket Anand
Chetan Arora
ArXivPDFHTML

Papers citing "Reducing Annotation Effort by Identifying and Labeling Contextually Diverse Classes for Semantic Segmentation Under Domain Shift"

2 / 2 papers shown
Title
S$^3$VAADA: Submodular Subset Selection for Virtual Adversarial Active
  Domain Adaptation
S3^33VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation
Harsh Rangwani
Arihant Jain
Sumukh K Aithal
R. Venkatesh Babu
TTA
31
29
0
18 Sep 2021
Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings
Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings
Viraj Prabhu
Arjun Chandrasekaran
Kate Saenko
Judy Hoffman
OOD
100
124
0
16 Oct 2020
1