Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.06171
Cited By
Learning to Optimize Quasi-Newton Methods
11 October 2022
Isaac Liao
Rumen Dangovski
Jakob N. Foerster
Marin Soljacic
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Optimize Quasi-Newton Methods"
16 / 16 papers shown
Title
From Learning to Optimize to Learning Optimization Algorithms
Camille Castera
Peter Ochs
115
1
0
28 May 2024
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
159
233
0
23 Mar 2021
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
114
62
0
23 Sep 2020
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
Z. Yao
A. Gholami
Sheng Shen
Mustafa Mustafa
Kurt Keutzer
Michael W. Mahoney
ODL
91
281
0
01 Jun 2020
On the distance between two neural networks and the stability of learning
Jeremy Bernstein
Arash Vahdat
Yisong Yue
Xuan Li
ODL
227
58
0
09 Feb 2020
First-Order Preconditioning via Hypergradient Descent
Theodore H. Moskovitz
Rui Wang
Janice Lan
Sanyam Kapoor
Thomas Miconi
J. Yosinski
Aditya Rawal
AI4CE
50
8
0
18 Oct 2019
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
44
556
0
17 Jun 2019
Meta-Curvature
Eunbyung Park
Junier B. Oliva
BDL
50
124
0
09 Feb 2019
Understanding and correcting pathologies in the training of learned optimizers
Luke Metz
Niru Maheswaranathan
Jeremy Nixon
C. Freeman
Jascha Narain Sohl-Dickstein
ODL
69
148
0
24 Oct 2018
Non-convex Optimization for Machine Learning
Prateek Jain
Purushottam Kar
131
481
0
21 Dec 2017
Large Batch Training of Convolutional Networks
Yang You
Igor Gitman
Boris Ginsburg
ODL
125
848
0
13 Aug 2017
Self-Normalizing Neural Networks
Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
364
2,507
0
08 Jun 2017
Online Learning Rate Adaptation with Hypergradient Descent
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark Schmidt
Frank Wood
ODL
61
246
0
14 Mar 2017
Learning Gradient Descent: Better Generalization and Longer Horizons
Kaifeng Lyu
Shunhua Jiang
Jian Li
64
114
0
10 Mar 2017
Conditional Image Generation with PixelCNN Decoders
Aaron van den Oord
Nal Kalchbrenner
Oriol Vinyals
L. Espeholt
Alex Graves
Koray Kavukcuoglu
VLM
169
2,503
0
16 Jun 2016
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
99
2,004
0
14 Jun 2016
1