Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.05740
Cited By
v1
v2 (latest)
Stochastic Constrained DRO with a Complexity Independent of Sample Size
11 October 2022
Q. Qi
Jiameng Lyu
Kung-Sik Chan
E. Bai
Tianbao Yang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Stochastic Constrained DRO with a Complexity Independent of Sample Size"
34 / 34 papers shown
Title
Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization
Zimeng Qiu
Quanqi Hu
Zhuoning Yuan
Denny Zhou
Lijun Zhang
Tianbao Yang
79
21
0
19 May 2023
CyCLIP: Cyclic Contrastive Language-Image Pretraining
Shashank Goel
Hritik Bansal
S. Bhatia
Ryan Rossi
Vishwa Vinay
Aditya Grover
CLIP
VLM
258
140
0
28 May 2022
Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance
Zhuoning Yuan
Yuexin Wu
Zi-qi Qiu
Xianzhi Du
Lijun Zhang
Denny Zhou
Tianbao Yang
128
30
0
24 Feb 2022
On the Complexity of a Practical Primal-Dual Coordinate Method
Ahmet Alacaoglu
Volkan Cevher
Stephen J. Wright
60
13
0
19 Jan 2022
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Jikai Jin
Samir Bhatt
Haiyang Wang
Liwei Wang
70
51
0
24 Oct 2021
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
109
38
0
24 Sep 2021
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation
Junnan Li
Ramprasaath R. Selvaraju
Akhilesh Deepak Gotmare
Shafiq Joty
Caiming Xiong
Guosheng Lin
FaML
221
1,972
0
16 Jul 2021
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
967
29,810
0
26 Feb 2021
Variance Reduction via Primal-Dual Accelerated Dual Averaging for Nonsmooth Convex Finite-Sums
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
114
17
0
26 Feb 2021
Distributionally Robust Federated Averaging
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
53
142
0
25 Feb 2021
Optimal Algorithms for Convex Nested Stochastic Composite Optimization
Zhe Zhang
Guanghui Lan
72
30
0
19 Nov 2020
Large-Scale Methods for Distributionally Robust Optimization
Daniel Levy
Y. Carmon
John C. Duchi
Aaron Sidford
78
217
0
12 Oct 2020
Solving Stochastic Compositional Optimization is Nearly as Easy as Solving Stochastic Optimization
Tianyi Chen
Yuejiao Sun
W. Yin
114
82
0
25 Aug 2020
Tilted Empirical Risk Minimization
Tian Li
Ahmad Beirami
Maziar Sanjabi
Virginia Smith
72
135
0
02 Jul 2020
An Online Method for A Class of Distributionally Robust Optimization with Non-Convex Objectives
Qi Qi
Zhishuai Guo
Yi Tian Xu
Rong Jin
Tianbao Yang
85
47
0
17 Jun 2020
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
375
18,859
0
13 Feb 2020
A Simple and Effective Framework for Pairwise Deep Metric Learning
Qi Qi
Yan Yan
Xiaoyu Wang
Tianbao Yang
102
26
0
24 Dec 2019
Lower Bounds for Non-Convex Stochastic Optimization
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
93
363
0
05 Dec 2019
Decoupling Representation and Classifier for Long-Tailed Recognition
Bingyi Kang
Saining Xie
Marcus Rohrbach
Zhicheng Yan
Albert Gordo
Jiashi Feng
Yannis Kalantidis
OODD
180
1,222
0
21 Oct 2019
A Stochastic Composite Gradient Method with Incremental Variance Reduction
Junyu Zhang
Lin Xiao
51
68
0
24 Jun 2019
Distributionally Robust Optimization and Generalization in Kernel Methods
Matthew Staib
Stefanie Jegelka
72
133
0
27 May 2019
Momentum-Based Variance Reduction in Non-Convex SGD
Ashok Cutkosky
Francesco Orabona
ODL
86
410
0
24 May 2019
Stochastic Primal-Dual Algorithms with Faster Convergence than
O
(
1
/
T
)
O(1/\sqrt{T})
O
(
1/
T
)
for Problems without Bilinear Structure
Yan Yan
Yi Tian Xu
Qihang Lin
Lijun Zhang
Tianbao Yang
67
35
0
23 Apr 2019
Large-Scale Long-Tailed Recognition in an Open World
Ziwei Liu
Zhongqi Miao
Xiaohang Zhan
Jiayun Wang
Boqing Gong
Stella X. Yu
151
1,163
0
10 Apr 2019
Momentum Schemes with Stochastic Variance Reduction for Nonconvex Composite Optimization
Yi Zhou
Zhe Wang
Kaiyi Ji
Yingbin Liang
Vahid Tarokh
ODL
67
14
0
07 Feb 2019
Learning Models with Uniform Performance via Distributionally Robust Optimization
John C. Duchi
Hongseok Namkoong
OOD
63
423
0
20 Oct 2018
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
72
110
0
04 Oct 2018
Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach
John C. Duchi
Peter Glynn
Hongseok Namkoong
106
323
0
11 Oct 2016
Variance-based regularization with convex objectives
John C. Duchi
Hongseok Namkoong
76
351
0
08 Oct 2016
Statistical Estimation of Composite Risk Functionals and Risk Optimization Problems
Darinka Dentcheva
S. Penev
A. Ruszczynski
47
71
0
10 Apr 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
364
19,723
0
09 Mar 2015
Stochastic Compositional Gradient Descent: Algorithms for Minimizing Compositions of Expected-Value Functions
Mengdi Wang
Ethan X. Fang
Han Liu
96
264
0
14 Nov 2014
Convex Optimization in Julia
Madeleine Udell
Karanveer Mohan
David Zeng
Jenny Hong
Steven Diamond
Stephen P. Boyd
70
165
0
17 Oct 2014
Solving variational inequalities with Stochastic Mirror-Prox algorithm
A. Juditsky
A. Nemirovskii
Claire Tauvel
140
444
0
04 Sep 2008
1