ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.05686
  4. Cited By
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave
  Inference

Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference

11 October 2022
Maximilian Dax
Stephen R. Green
J. Gair
M. Purrer
J. Wildberger
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
    BDL
ArXivPDFHTML

Papers citing "Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference"

15 / 15 papers shown
Title
Discriminative versus Generative Approaches to Simulation-based Inference
Benjamin Sluijter
S. Diefenbacher
W. Bhimji
Benjamin Nachman
51
0
0
11 Mar 2025
Accelerated Bayesian parameter estimation and model selection for
  gravitational waves with normalizing flows
Accelerated Bayesian parameter estimation and model selection for gravitational waves with normalizing flows
Alicja Polanska
Thibeau Wouters
Peter T. H. Pang
Kaze K. W. Wong
Jason D. McEwen
31
1
0
28 Oct 2024
Cost-aware Simulation-based Inference
Cost-aware Simulation-based Inference
Ayush Bharti
Daolang Huang
Samuel Kaski
F. Briol
36
1
0
10 Oct 2024
Amortized Bayesian Workflow (Extended Abstract)
Amortized Bayesian Workflow (Extended Abstract)
Marvin Schmitt
Chengkun Li
Aki Vehtari
Luigi Acerbi
Paul-Christian Bürkner
Stefan T. Radev
23
2
0
06 Sep 2024
Fast and Reliable Probabilistic Reflectometry Inversion with
  Prior-Amortized Neural Posterior Estimation
Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation
V. Starostin
Maximilian Dax
A. Gerlach
A. Hinderhofer
Álvaro Tejero-Cantero
Frank Schreiber
24
0
0
26 Jul 2024
Real-time gravitational-wave inference for binary neutron stars using
  machine learning
Real-time gravitational-wave inference for binary neutron stars using machine learning
Maximilian Dax
Stephen R. Green
J. Gair
N. Gupte
M. Purrer
Vivien Raymond
J. Wildberger
Jakob H. Macke
A. Buonanno
Bernhard Scholkopf
21
9
0
12 Jul 2024
Diffusion posterior sampling for simulation-based inference in tall data
  settings
Diffusion posterior sampling for simulation-based inference in tall data settings
J. Linhart
Gabriel Victorino Cardoso
Alexandre Gramfort
Sylvain Le Corff
Pedro L. C. Rodrigues
DiffM
53
3
0
11 Apr 2024
Inferring Atmospheric Properties of Exoplanets with Flow Matching and
  Neural Importance Sampling
Inferring Atmospheric Properties of Exoplanets with Flow Matching and Neural Importance Sampling
Timothy D. Gebhard
J. Wildberger
Maximilian Dax
Daniel Angerhausen
S. Quanz
Bernhard Schölkopf
16
6
0
13 Dec 2023
Consistency Models for Scalable and Fast Simulation-Based Inference
Consistency Models for Scalable and Fast Simulation-Based Inference
Marvin Schmitt
Valentin Pratz
Ullrich Kothe
Paul-Christian Bürkner
Stefan T. Radev
29
9
0
09 Dec 2023
nbi: the Astronomer's Package for Neural Posterior Estimation
nbi: the Astronomer's Package for Neural Posterior Estimation
Keming 名 Zhang 张 可
Joshua S. Bloom
Stéfan van der Walt
N. Hernitschek
19
3
0
06 Dec 2023
Sensitivity-Aware Amortized Bayesian Inference
Sensitivity-Aware Amortized Bayesian Inference
Lasse Elsemüller
Hans Olischläger
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
23
7
0
17 Oct 2023
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian
  Inference
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference
Marvin Schmitt
Desi R. Ivanova
Daniel Habermann
Baixu Chen
Jie Jiang
Stefan T. Radev
FedML
35
5
0
06 Oct 2023
Flow Matching for Scalable Simulation-Based Inference
Flow Matching for Scalable Simulation-Based Inference
Maximilian Dax
J. Wildberger
Simon Buchholz
Stephen R. Green
Jakob H. Macke
Bernhard Schölkopf
29
48
0
26 May 2023
Adversarial robustness of amortized Bayesian inference
Adversarial robustness of amortized Bayesian inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
AAML
27
13
0
24 May 2023
Adapting to noise distribution shifts in flow-based gravitational-wave
  inference
Adapting to noise distribution shifts in flow-based gravitational-wave inference
J. Wildberger
Maximilian Dax
Stephen R. Green
J. Gair
M. Purrer
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
AI4CE
21
9
0
16 Nov 2022
1