ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.05411
  4. Cited By
Class-Specific Explainability for Deep Time Series Classifiers

Class-Specific Explainability for Deep Time Series Classifiers

11 October 2022
Ramesh Doddaiah
Prathyush S. Parvatharaju
Elke A. Rundensteiner
Thomas Hartvigsen
    FAttAI4TS
ArXiv (abs)PDFHTMLGithub (6★)

Papers citing "Class-Specific Explainability for Deep Time Series Classifiers"

17 / 17 papers shown
Title
Explanation Space: A New Perspective into Time Series Interpretability
Explanation Space: A New Perspective into Time Series Interpretability
Shahbaz Rezaei
Xin Liu
AI4TS
209
2
0
02 Sep 2024
Deletion and Insertion Tests in Regression Models
Deletion and Insertion Tests in Regression Models
Naofumi Hama
Masayoshi Mase
Art B. Owen
63
8
0
25 May 2022
TS-MULE: Local Interpretable Model-Agnostic Explanations for Time Series
  Forecast Models
TS-MULE: Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models
U. Schlegel
D. Lam
Daniel A. Keim
Daniel Seebacher
FAttAI4TS
97
32
0
17 Sep 2021
Explaining Time Series Predictions with Dynamic Masks
Explaining Time Series Predictions with Dynamic Masks
Jonathan Crabbé
M. Schaar
FAttAI4TS
93
81
0
09 Jun 2021
TimeSHAP: Explaining Recurrent Models through Sequence Perturbations
TimeSHAP: Explaining Recurrent Models through Sequence Perturbations
João Bento
Pedro Saleiro
André F. Cruz
Mário A. T. Figueiredo
P. Bizarro
FAttAI4TS
74
95
0
30 Nov 2020
Benchmarking Deep Learning Interpretability in Time Series Predictions
Benchmarking Deep Learning Interpretability in Time Series Predictions
Aya Abdelsalam Ismail
Mohamed K. Gunady
H. C. Bravo
Soheil Feizi
XAIAI4TSFAtt
66
173
0
26 Oct 2020
timeXplain -- A Framework for Explaining the Predictions of Time Series
  Classifiers
timeXplain -- A Framework for Explaining the Predictions of Time Series Classifiers
Felix Mujkanovic
Vanja Doskoc
Martin Schirneck
Patrick Schäfer
Tobias Friedrich
FAttAI4TS
40
23
0
15 Jul 2020
What went wrong and when? Instance-wise Feature Importance for
  Time-series Models
What went wrong and when? Instance-wise Feature Importance for Time-series Models
S. Tonekaboni
Shalmali Joshi
Kieran Campbell
David Duvenaud
Anna Goldenberg
FAttOODAI4TS
107
14
0
05 Mar 2020
Problems with Shapley-value-based explanations as feature importance
  measures
Problems with Shapley-value-based explanations as feature importance measures
Indra Elizabeth Kumar
Suresh Venkatasubramanian
C. Scheidegger
Sorelle A. Friedler
TDIFAtt
98
368
0
25 Feb 2020
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Ruth C. Fong
Mandela Patrick
Andrea Vedaldi
AAML
83
418
0
18 Oct 2019
Towards a Rigorous Evaluation of XAI Methods on Time Series
Towards a Rigorous Evaluation of XAI Methods on Time Series
U. Schlegel
Hiba Arnout
Mennatallah El-Assady
Daniela Oelke
Daniel A. Keim
XAIAI4TS
83
174
0
16 Sep 2019
Automatic diagnosis of the 12-lead ECG using a deep neural network
Automatic diagnosis of the 12-lead ECG using a deep neural network
Antônio H. Ribeiro
Manoel Horta Ribeiro
Gabriela M. M. Paixão
D. Oliveira
P. R. Gomes
...
Carl R. Andersson
P. Macfarlane
W. Meira Jr.
Thomas B. Schon
A. L. Ribeiro
73
663
0
02 Apr 2019
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
188
1,176
0
19 Jun 2018
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAttAAML
83
1,526
0
11 Apr 2017
Recurrent Neural Networks for Multivariate Time Series with Missing
  Values
Recurrent Neural Networks for Multivariate Time Series with Missing Values
Zhengping Che
S. Purushotham
Kyunghyun Cho
David Sontag
Yan Liu
AI4TS
319
1,951
0
06 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,071
0
16 Feb 2016
Prioritized Experience Replay
Prioritized Experience Replay
Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
OffRL
231
3,796
0
18 Nov 2015
1