ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04284
  4. Cited By
SparseAdapter: An Easy Approach for Improving the Parameter-Efficiency
  of Adapters

SparseAdapter: An Easy Approach for Improving the Parameter-Efficiency of Adapters

9 October 2022
Shwai He
Liang Ding
Daize Dong
Miao Zhang
Dacheng Tao
    MoE
ArXivPDFHTML

Papers citing "SparseAdapter: An Easy Approach for Improving the Parameter-Efficiency of Adapters"

12 / 12 papers shown
Title
Sparse High Rank Adapters
Sparse High Rank Adapters
K. Bhardwaj
N. Pandey
Sweta Priyadarshi
Viswanath Ganapathy
Rafael Esteves
...
P. Whatmough
Risheek Garrepalli
M. V. Baalen
Harris Teague
Markus Nagel
MQ
43
4
0
28 Jan 2025
AdaRankGrad: Adaptive Gradient-Rank and Moments for Memory-Efficient LLMs Training and Fine-Tuning
AdaRankGrad: Adaptive Gradient-Rank and Moments for Memory-Efficient LLMs Training and Fine-Tuning
Yehonathan Refael
Jonathan Svirsky
Boris Shustin
Wasim Huleihel
Ofir Lindenbaum
47
3
0
31 Dec 2024
Parameter-Efficient Fine-Tuning in Large Models: A Survey of Methodologies
Parameter-Efficient Fine-Tuning in Large Models: A Survey of Methodologies
Liwen Wang
Sheng Chen
Linnan Jiang
Shu Pan
Runze Cai
Sen Yang
Fei Yang
49
3
0
24 Oct 2024
Understanding the Performance and Estimating the Cost of LLM Fine-Tuning
Understanding the Performance and Estimating the Cost of LLM Fine-Tuning
Yuchen Xia
Jiho Kim
Yuhan Chen
Haojie Ye
Souvik Kundu
Cong
Hao
Nishil Talati
MoE
35
20
0
08 Aug 2024
Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation
Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation
Xinyu Ma
Xu Chu
Zhibang Yang
Yang Lin
Xin Gao
Junfeng Zhao
46
7
0
05 Apr 2024
PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs
PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs
Max Zimmer
Megi Andoni
Christoph Spiegel
Sebastian Pokutta
VLM
52
10
0
23 Dec 2023
Decomposed Prompt Tuning via Low-Rank Reparameterization
Decomposed Prompt Tuning via Low-Rank Reparameterization
Yao Xiao
Lu Xu
Jiaxi Li
Wei Lu
Xiaoli Li
VLM
25
6
0
16 Oct 2023
IncreLoRA: Incremental Parameter Allocation Method for
  Parameter-Efficient Fine-tuning
IncreLoRA: Incremental Parameter Allocation Method for Parameter-Efficient Fine-tuning
Feiyu F. Zhang
Liangzhi Li
Jun-Cheng Chen
Zhouqian Jiang
Bowen Wang
Yiming Qian
51
32
0
23 Aug 2023
Parameter-Efficient and Student-Friendly Knowledge Distillation
Parameter-Efficient and Student-Friendly Knowledge Distillation
Jun Rao
Xv Meng
Liang Ding
Shuhan Qi
Dacheng Tao
37
46
0
28 May 2022
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,858
0
18 Apr 2021
Mixout: Effective Regularization to Finetune Large-scale Pretrained
  Language Models
Mixout: Effective Regularization to Finetune Large-scale Pretrained Language Models
Cheolhyoung Lee
Kyunghyun Cho
Wanmo Kang
MoE
249
205
0
25 Sep 2019
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,959
0
20 Apr 2018
1