ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.03894
  4. Cited By
GRANITE: A Graph Neural Network Model for Basic Block Throughput
  Estimation

GRANITE: A Graph Neural Network Model for Basic Block Throughput Estimation

8 October 2022
O. Sýkora
P. Phothilimthana
Charith Mendis
Amir Yazdanbakhsh
    GNN
ArXivPDFHTML

Papers citing "GRANITE: A Graph Neural Network Model for Basic Block Throughput Estimation"

30 / 30 papers shown
Title
Data-Driven Offline Optimization For Architecting Hardware Accelerators
Data-Driven Offline Optimization For Architecting Hardware Accelerators
Aviral Kumar
Amir Yazdanbakhsh
Milad Hashemi
Kevin Swersky
Sergey Levine
53
36
0
20 Oct 2021
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space
  Search
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search
Kartik Hegde
Po-An Tsai
Sitao Huang
Vikas Chandra
A. Parashar
Christopher W. Fletcher
41
93
0
02 Mar 2021
An Evaluation of Edge TPU Accelerators for Convolutional Neural Networks
An Evaluation of Edge TPU Accelerators for Convolutional Neural Networks
K. Seshadri
Berkin Akin
James Laudon
Ravi Narayanaswami
Amir Yazdanbakhsh
77
119
0
20 Feb 2021
Apollo: Transferable Architecture Exploration
Apollo: Transferable Architecture Exploration
Amir Yazdanbakhsh
Christof Angermueller
Berkin Akin
Yanqi Zhou
Albin Jones
Milad Hashemi
Kevin Swersky
S. Chatterjee
Ravi Narayanaswami
James Laudon
38
24
0
02 Feb 2021
MLGO: a Machine Learning Guided Compiler Optimizations Framework
MLGO: a Machine Learning Guided Compiler Optimizations Framework
Mircea Trofin
Yundi Qian
E. Brevdo
Zinan Lin
K. Choromanski
Didong Li
51
62
0
13 Jan 2021
Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning
  Workloads
Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads
Deepak Narayanan
Keshav Santhanam
Fiodar Kazhamiaka
Amar Phanishayee
Matei A. Zaharia
36
207
0
20 Aug 2020
Improved Code Summarization via a Graph Neural Network
Improved Code Summarization via a Graph Neural Network
Alexander LeClair
S. Haque
Lingfei Wu
Collin McMillan
49
284
0
06 Apr 2020
ProGraML: Graph-based Deep Learning for Program Optimization and
  Analysis
ProGraML: Graph-based Deep Learning for Program Optimization and Analysis
Chris Cummins
Zacharias V. Fisches
Tal Ben-Nun
Torsten Hoefler
Hugh Leather
123
56
0
23 Mar 2020
Learning Execution through Neural Code Fusion
Learning Execution through Neural Code Fusion
Zhan Shi
Kevin Swersky
Daniel Tarlow
Parthasarathy Ranganathan
Milad Hashemi
GNN
83
29
0
17 Jun 2019
Estimating Node Importance in Knowledge Graphs Using Graph Neural
  Networks
Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks
Namyong Park
Andrey Kan
Xin Luna Dong
Tong Zhao
Christos Faloutsos
41
158
0
21 May 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
415
8,441
0
03 Jan 2019
Graph Neural Networks: A Review of Methods and Applications
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
677
5,457
0
20 Dec 2018
Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation
  using Deep Neural Networks
Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks
Charith Mendis
Alex Renda
Saman P. Amarasinghe
Michael Carbin
25
152
0
21 Aug 2018
Graph-to-Sequence Learning using Gated Graph Neural Networks
Graph-to-Sequence Learning using Gated Graph Neural Networks
Daniel Beck
Gholamreza Haffari
Trevor Cohn
GNN
62
323
0
26 Jun 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
493
3,101
0
04 Jun 2018
Exploiting Semantics in Neural Machine Translation with Graph
  Convolutional Networks
Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks
Diego Marcheggiani
Jasmijn Bastings
Ivan Titov
GNN
NAI
80
186
0
23 Apr 2018
code2vec: Learning Distributed Representations of Code
code2vec: Learning Distributed Representations of Code
Uri Alon
Meital Zilberstein
Omer Levy
Eran Yahav
53
1,164
0
26 Mar 2018
Visualizing the Loss Landscape of Neural Nets
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
236
1,873
0
28 Dec 2017
Learning to Represent Programs with Graphs
Learning to Represent Programs with Graphs
Miltiadis Allamanis
Marc Brockschmidt
Mahmoud Khademi
GNN
NAI
106
799
0
01 Nov 2017
Cross-Sentence N-ary Relation Extraction with Graph LSTMs
Cross-Sentence N-ary Relation Extraction with Graph LSTMs
Nanyun Peng
Hoifung Poon
Chris Quirk
Kristina Toutanova
Wen-tau Yih
58
509
0
12 Aug 2017
A simple neural network module for relational reasoning
A simple neural network module for relational reasoning
Adam Santoro
David Raposo
David Barrett
Mateusz Malinowski
Razvan Pascanu
Peter W. Battaglia
Timothy Lillicrap
GNN
NAI
132
1,610
0
05 Jun 2017
In-Datacenter Performance Analysis of a Tensor Processing Unit
In-Datacenter Performance Analysis of a Tensor Processing Unit
N. Jouppi
C. Young
Nishant Patil
David Patterson
Gaurav Agrawal
...
Vijay Vasudevan
Richard Walter
Walter Wang
Eric Wilcox
Doe Hyun Yoon
192
4,619
0
16 Apr 2017
Graph Convolutional Encoders for Syntax-aware Neural Machine Translation
Graph Convolutional Encoders for Syntax-aware Neural Machine Translation
Jasmijn Bastings
Ivan Titov
Wilker Aziz
Diego Marcheggiani
K. Simaán
GNN
81
492
0
15 Apr 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
345
7,388
0
04 Apr 2017
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
490
1,405
0
01 Dec 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
536
28,901
0
09 Sep 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
300
10,412
0
21 Jul 2016
End-to-End Relation Extraction using LSTMs on Sequences and Tree
  Structures
End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures
Makoto Miwa
Joey Tianyi Zhou
125
1,186
0
05 Jan 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.6K
192,638
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.1K
149,474
0
22 Dec 2014
1