ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.03822
  4. Cited By
Is margin all you need? An extensive empirical study of active learning
  on tabular data

Is margin all you need? An extensive empirical study of active learning on tabular data

7 October 2022
Dara Bahri
Heinrich Jiang
Tal Schuster
Afshin Rostamizadeh
    LMTD
ArXivPDFHTML

Papers citing "Is margin all you need? An extensive empirical study of active learning on tabular data"

8 / 8 papers shown
Title
A Cross-Domain Benchmark for Active Learning
A Cross-Domain Benchmark for Active Learning
M. M. Kholoosi
M. A. Babar
Maximilian Stubbemann
Lars Schmidt-Thieme
35
1
0
01 Aug 2024
ALPBench: A Benchmark for Active Learning Pipelines on Tabular Data
ALPBench: A Benchmark for Active Learning Pipelines on Tabular Data
Valentin Margraf
Marcel Wever
Sandra Gilhuber
Gabriel Marques Tavares
Thomas Seidl
Eyke Hüllermeier
41
0
0
25 Jun 2024
Fast Fishing: Approximating BAIT for Efficient and Scalable Deep Active
  Image Classification
Fast Fishing: Approximating BAIT for Efficient and Scalable Deep Active Image Classification
Denis Huseljic
Paul Hahn
M. Herde
Lukas Rauch
Bernhard Sick
30
1
0
13 Apr 2024
Benchmarking Multi-Domain Active Learning on Image Classification
Benchmarking Multi-Domain Active Learning on Image Classification
Jiayi Li
Rohan Taori
Tatsunori Hashimoto
VLM
32
0
0
01 Dec 2023
Generalized Power Attacks against Crypto Hardware using Long-Range Deep
  Learning
Generalized Power Attacks against Crypto Hardware using Long-Range Deep Learning
Elie Bursztein
Luca Invernizzi
Karel Král
D. Moghimi
J. Picod
Marina Zhang
AAML
30
5
0
12 Jun 2023
Combining Self-labeling with Selective Sampling
Combining Self-labeling with Selective Sampling
Jedrzej Kozal
Michal Wo'zniak
26
3
0
11 Jan 2023
Efficient Bayesian Updates for Deep Learning via Laplace Approximations
Efficient Bayesian Updates for Deep Learning via Laplace Approximations
Denis Huseljic
M. Herde
Lukas Rauch
Paul Hahn
Zhixin Huang
D. Kottke
S. Vogt
Bernhard Sick
BDL
16
0
0
12 Oct 2022
Active Learning on a Budget: Opposite Strategies Suit High and Low
  Budgets
Active Learning on a Budget: Opposite Strategies Suit High and Low Budgets
Guy Hacohen
Avihu Dekel
D. Weinshall
124
116
0
06 Feb 2022
1