ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.02373
  4. Cited By
Dynamical systems' based neural networks

Dynamical systems' based neural networks

5 October 2022
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
    OOD
ArXivPDFHTML

Papers citing "Dynamical systems' based neural networks"

13 / 13 papers shown
Title
Symplectic Neural Flows for Modeling and Discovery
Symplectic Neural Flows for Modeling and Discovery
Priscilla Canizares
Davide Murari
Carola-Bibiane Schönlieb
Ferdia Sherry
Zakhar Shumaylov
80
1
0
21 Dec 2024
Symplectic Neural Networks Based on Dynamical Systems
Symplectic Neural Networks Based on Dynamical Systems
Benjamin K Tapley
39
1
0
19 Aug 2024
Systematic construction of continuous-time neural networks for linear
  dynamical systems
Systematic construction of continuous-time neural networks for linear dynamical systems
Chinmay Datar
Adwait Datar
Felix Dietrich
W. Schilders
AI4TS
38
1
0
24 Mar 2024
Designing Stable Neural Networks using Convex Analysis and ODEs
Designing Stable Neural Networks using Convex Analysis and ODEs
Ferdia Sherry
E. Celledoni
Matthias Joachim Ehrhardt
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
12
11
0
29 Jun 2023
Predictions Based on Pixel Data: Insights from PDEs and Finite
  Differences
Predictions Based on Pixel Data: Insights from PDEs and Finite Differences
E. Celledoni
James Jackaman
Davide Murari
B. Owren
33
1
0
01 May 2023
Universal Approximation Property of Hamiltonian Deep Neural Networks
Universal Approximation Property of Hamiltonian Deep Neural Networks
M. Zakwan
M. d’Angelo
Giancarlo Ferrari-Trecate
36
5
0
21 Mar 2023
Learning Hamiltonians of constrained mechanical systems
Learning Hamiltonians of constrained mechanical systems
E. Celledoni
A. Leone
Davide Murari
B. Owren
AI4CE
44
17
0
31 Jan 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,106
0
27 Apr 2021
Differentiable Implicit Layers
Differentiable Implicit Layers
Andreas Look
Simona Doneva
M. Kandemir
Rainer Gemulla
Jan Peters
24
9
0
14 Oct 2020
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
152
220
0
29 Sep 2019
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
227
348
0
14 Jun 2018
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
Optimization on Submanifolds of Convolution Kernels in CNNs
Optimization on Submanifolds of Convolution Kernels in CNNs
Mete Ozay
Takayuki Okatani
45
46
0
22 Oct 2016
1