ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.02156
  4. Cited By
Fine-Tuning with Differential Privacy Necessitates an Additional
  Hyperparameter Search

Fine-Tuning with Differential Privacy Necessitates an Additional Hyperparameter Search

5 October 2022
Yannis Cattan
Christopher A. Choquette-Choo
Nicolas Papernot
Abhradeep Thakurta
ArXivPDFHTML

Papers citing "Fine-Tuning with Differential Privacy Necessitates an Additional Hyperparameter Search"

20 / 20 papers shown
Title
NeurIPS 2023 Competition: Privacy Preserving Federated Learning Document
  VQA
NeurIPS 2023 Competition: Privacy Preserving Federated Learning Document VQA
Marlon Tobaben
Mohamed Ali Souibgui
Rubèn Pérez Tito
Khanh Nguyen
Raouf Kerkouche
...
Josep Lladós
Ernest Valveny
Antti Honkela
Mario Fritz
Dimosthenis Karatzas
FedML
39
0
0
06 Nov 2024
DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning
DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning
Jonathan Lebensold
Maziar Sanjabi
Pietro Astolfi
Adriana Romero Soriano
Kamalika Chaudhuri
Mike Rabbat
Chuan Guo
DiffM
21
4
0
21 Mar 2024
Privacy-Aware Document Visual Question Answering
Privacy-Aware Document Visual Question Answering
Rubèn Pérez Tito
Khanh Nguyen
Marlon Tobaben
Raouf Kerkouche
Mohamed Ali Souibgui
...
Lei Kang
Ernest Valveny
Antti Honkela
Mario Fritz
Dimosthenis Karatzas
35
13
0
15 Dec 2023
Unlocking Accuracy and Fairness in Differentially Private Image
  Classification
Unlocking Accuracy and Fairness in Differentially Private Image Classification
Leonard Berrada
Soham De
J. Shen
Jamie Hayes
Robert Stanforth
David Stutz
Pushmeet Kohli
Samuel L. Smith
Borja Balle
21
13
0
21 Aug 2023
Guiding The Last Layer in Federated Learning with Pre-Trained Models
Guiding The Last Layer in Federated Learning with Pre-Trained Models
G. Legate
Nicolas Bernier
Lucas Page-Caccia
Edouard Oyallon
Eugene Belilovsky
FedML
11
8
0
06 Jun 2023
On the Fairness Impacts of Private Ensembles Models
On the Fairness Impacts of Private Ensembles Models
Cuong Tran
Ferdinando Fioretto
39
4
0
19 May 2023
Choosing Public Datasets for Private Machine Learning via Gradient
  Subspace Distance
Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance
Xin Gu
Gautam Kamath
Zhiwei Steven Wu
17
12
0
02 Mar 2023
Differentially Private Diffusion Models Generate Useful Synthetic Images
Differentially Private Diffusion Models Generate Useful Synthetic Images
Sahra Ghalebikesabi
Leonard Berrada
Sven Gowal
Ira Ktena
Robert Stanforth
Jamie Hayes
Soham De
Samuel L. Smith
Olivia Wiles
Borja Balle
DiffM
25
69
0
27 Feb 2023
Bounding Training Data Reconstruction in DP-SGD
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
33
39
0
14 Feb 2023
On the Efficacy of Differentially Private Few-shot Image Classification
On the Efficacy of Differentially Private Few-shot Image Classification
Marlon Tobaben
Aliaksandra Shysheya
J. Bronskill
Andrew J. Paverd
Shruti Tople
Santiago Zanella Béguelin
Richard E. Turner
Antti Honkela
33
11
0
02 Feb 2023
A New Linear Scaling Rule for Private Adaptive Hyperparameter
  Optimization
A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization
Ashwinee Panda
Xinyu Tang
Saeed Mahloujifar
Vikash Sehwag
Prateek Mittal
36
11
0
08 Dec 2022
Differentially Private Image Classification from Features
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
46
7
0
24 Nov 2022
Learning to Generate Image Embeddings with User-level Differential
  Privacy
Learning to Generate Image Embeddings with User-level Differential Privacy
Zheng Xu
Maxwell D. Collins
Yuxiao Wang
Liviu Panait
Sewoong Oh
S. Augenstein
Ting Liu
Florian Schroff
H. B. McMahan
FedML
30
29
0
20 Nov 2022
Differentially Private Fine-tuning of Language Models
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
346
0
13 Oct 2021
Hyperparameter Tuning with Renyi Differential Privacy
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
132
119
0
07 Oct 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
  Private Learning
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
94
110
0
25 Feb 2021
High-Performance Large-Scale Image Recognition Without Normalization
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
223
512
0
11 Feb 2021
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
139
178
0
28 Jul 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
231
4,460
0
23 Jan 2020
Amplification by Shuffling: From Local to Central Differential Privacy
  via Anonymity
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
141
420
0
29 Nov 2018
1