Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.01407
Cited By
Homotopy-based training of NeuralODEs for accurate dynamics discovery
4 October 2022
Joon-Hyuk Ko
Hankyul Koh
Nojun Park
W. Jhe
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Homotopy-based training of NeuralODEs for accurate dynamics discovery"
8 / 8 papers shown
Title
A scalable generative model for dynamical system reconstruction from neuroimaging data
Eric Volkmann
Alena Brändle
Daniel Durstewitz
G. Koppe
AI4CE
28
1
0
05 Nov 2024
Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes in Dynamical Systems Reconstruction
Manuel Brenner
Christoph Jurgen Hemmer
Zahra Monfared
Daniel Durstewitz
AI4CE
33
0
0
18 Oct 2024
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Manuel Brenner
Elias Weber
G. Koppe
Daniel Durstewitz
AI4TS
AI4CE
36
3
0
07 Oct 2024
Optimal Recurrent Network Topologies for Dynamical Systems Reconstruction
Christoph Jurgen Hemmer
Manuel Brenner
Florian Hess
Daniel Durstewitz
36
3
0
07 Jun 2024
Out-of-Domain Generalization in Dynamical Systems Reconstruction
Niclas Alexander Göring
Florian Hess
Manuel Brenner
Zahra Monfared
Daniel Durstewitz
AI4CE
32
10
0
28 Feb 2024
Moderate Adaptive Linear Units (MoLU)
Hankyul Koh
Joon-Hyuk Ko
W. Jhe
13
0
0
27 Feb 2023
On the difficulty of learning chaotic dynamics with RNNs
Jonas M. Mikhaeil
Zahra Monfared
Daniel Durstewitz
59
50
0
14 Oct 2021
Multiple shooting for training neural differential equations on time series
Evren Mert Turan
J. Jäschke
AI4TS
37
23
0
14 Sep 2021
1