Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.01161
Cited By
Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation
3 October 2022
Taha Toghani
César A. Uribe
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation"
20 / 20 papers shown
Title
Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
FedML
40
80
0
16 Jun 2022
Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays
Konstantin Mishchenko
Francis R. Bach
Mathieu Even
Blake E. Woodworth
54
59
0
15 Jun 2022
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
267
418
0
14 Jul 2021
Federated Learning with Buffered Asynchronous Aggregation
John Nguyen
Kshitiz Malik
Hongyuan Zhan
Ashkan Yousefpour
Michael G. Rabbat
Mani Malek
Dzmitry Huba
FedML
76
303
0
11 Jun 2021
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
71
239
0
12 Feb 2021
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
49
1,329
0
15 Jul 2020
Advances in Asynchronous Parallel and Distributed Optimization
By Mahmoud Assran
Arda Aytekin
Hamid Reza Feyzmahdavian
M. Johansson
Michael G. Rabbat
51
76
0
24 Jun 2020
Personalized Federated Learning with Moreau Envelopes
Canh T. Dinh
N. H. Tran
Tuan Dung Nguyen
FedML
81
992
0
16 Jun 2020
Asynchronous Federated Learning with Differential Privacy for Edge Intelligence
Yanan Li
Shusen Yang
Xuebin Ren
Cong Zhao
FedML
44
33
0
17 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
183
6,229
0
10 Dec 2019
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
68
433
0
10 Sep 2019
Decentralized Deep Learning with Arbitrary Communication Compression
Anastasia Koloskova
Tao R. Lin
Sebastian U. Stich
Martin Jaggi
FedML
39
235
0
22 Jul 2019
Asynchronous Federated Optimization
Cong Xie
Oluwasanmi Koyejo
Indranil Gupta
FedML
65
566
0
10 Mar 2019
Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning
Hao Yu
Sen Yang
Shenghuo Zhu
MoMe
FedML
73
604
0
17 Jul 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
164
1,061
0
24 May 2018
Practical Secure Aggregation for Federated Learning on User-Held Data
Keith Bonawitz
Vladimir Ivanov
Ben Kreuter
Antonio Marcedone
H. B. McMahan
Sarvar Patel
Daniel Ramage
Aaron Segal
Karn Seth
FedML
65
501
0
14 Nov 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
286
4,636
0
18 Oct 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
375
17,399
0
17 Feb 2016
An Asynchronous Mini-Batch Algorithm for Regularized Stochastic Optimization
Hamid Reza Feyzmahdavian
Arda Aytekin
M. Johansson
48
117
0
18 May 2015
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
165
2,273
0
28 Jun 2011
1