ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.00557
  4. Cited By
Adaptive Smoothness-weighted Adversarial Training for Multiple
  Perturbations with Its Stability Analysis

Adaptive Smoothness-weighted Adversarial Training for Multiple Perturbations with Its Stability Analysis

2 October 2022
Jiancong Xiao
Zeyu Qin
Yanbo Fan
Baoyuan Wu
Jue Wang
Zhimin Luo
    AAML
ArXivPDFHTML

Papers citing "Adaptive Smoothness-weighted Adversarial Training for Multiple Perturbations with Its Stability Analysis"

8 / 8 papers shown
Title
Towards Universal Certified Robustness with Multi-Norm Training
Towards Universal Certified Robustness with Multi-Norm Training
Enyi Jiang
Gagandeep Singh
Gagandeep Singh
AAML
60
1
0
03 Oct 2024
Uniformly Stable Algorithms for Adversarial Training and Beyond
Uniformly Stable Algorithms for Adversarial Training and Beyond
Jiancong Xiao
Jiawei Zhang
Zhimin Luo
Asuman Ozdaglar
AAML
48
0
0
03 May 2024
RAMP: Boosting Adversarial Robustness Against Multiple $l_p$
  Perturbations
RAMP: Boosting Adversarial Robustness Against Multiple lpl_plp​ Perturbations
Enyi Jiang
Gagandeep Singh
AAML
30
1
0
09 Feb 2024
Better Representations via Adversarial Training in Pre-Training: A
  Theoretical Perspective
Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective
Yue Xing
Xiaofeng Lin
Qifan Song
Yi Tian Xu
Belinda Zeng
Guang Cheng
SSL
26
0
0
26 Jan 2024
Adversarial Rademacher Complexity of Deep Neural Networks
Adversarial Rademacher Complexity of Deep Neural Networks
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Zhimin Luo
AAML
17
22
0
27 Nov 2022
Stability Analysis and Generalization Bounds of Adversarial Training
Stability Analysis and Generalization Bounds of Adversarial Training
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Jue Wang
Zhimin Luo
AAML
32
30
0
03 Oct 2022
On the Convergence and Robustness of Adversarial Training
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
212
345
0
15 Dec 2021
A disciplined approach to neural network hyper-parameters: Part 1 --
  learning rate, batch size, momentum, and weight decay
A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay
L. Smith
208
1,020
0
26 Mar 2018
1