ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.00513
  4. Cited By
Gradient Gating for Deep Multi-Rate Learning on Graphs

Gradient Gating for Deep Multi-Rate Learning on Graphs

2 October 2022
T. Konstantin Rusch
B. Chamberlain
Michael W. Mahoney
Michael M. Bronstein
Siddhartha Mishra
ArXivPDFHTML

Papers citing "Gradient Gating for Deep Multi-Rate Learning on Graphs"

16 / 16 papers shown
Title
Efficient Learning on Large Graphs using a Densifying Regularity Lemma
Efficient Learning on Large Graphs using a Densifying Regularity Lemma
Jonathan Kouchly
Ben Finkelshtein
M. Bronstein
Ron Levie
39
0
0
25 Apr 2025
Preventing Representational Rank Collapse in MPNNs by Splitting the
  Computational Graph
Preventing Representational Rank Collapse in MPNNs by Splitting the Computational Graph
Andreas Roth
Franka Bause
Nils M. Kriege
Thomas Liebig
33
3
0
17 Sep 2024
Graph Neural Reaction Diffusion Models
Graph Neural Reaction Diffusion Models
Moshe Eliasof
Eldad Haber
Eran Treister
DiffM
AI4CE
35
2
0
16 Jun 2024
Understanding Oversmoothing in Diffusion-Based GNNs From the Perspective of Operator Semigroup Theory
Understanding Oversmoothing in Diffusion-Based GNNs From the Perspective of Operator Semigroup Theory
Weichen Zhao
Chenguang Wang
Xinyan Wang
Congying Han
Tiande Guo
Tianshu Yu
44
0
0
23 Feb 2024
Supercharging Graph Transformers with Advective Diffusion
Supercharging Graph Transformers with Advective Diffusion
Qitian Wu
Chenxiao Yang
Kaipeng Zeng
Fan Nie
AI4CE
45
6
0
10 Oct 2023
Rank Collapse Causes Over-Smoothing and Over-Correlation in Graph Neural
  Networks
Rank Collapse Causes Over-Smoothing and Over-Correlation in Graph Neural Networks
Andreas Roth
Thomas Liebig
41
12
0
31 Aug 2023
Edge Directionality Improves Learning on Heterophilic Graphs
Edge Directionality Improves Learning on Heterophilic Graphs
Emanuele Rossi
Bertrand Charpentier
Francesco Di Giovanni
Fabrizio Frasca
Stephan Günnemann
Michael M. Bronstein
22
56
0
17 May 2023
A Survey on Oversmoothing in Graph Neural Networks
A Survey on Oversmoothing in Graph Neural Networks
T. Konstantin Rusch
Michael M. Bronstein
Siddhartha Mishra
24
185
0
20 Mar 2023
Graph Positional Encoding via Random Feature Propagation
Graph Positional Encoding via Random Feature Propagation
Moshe Eliasof
Fabrizio Frasca
Beatrice Bevilacqua
Eran Treister
Gal Chechik
Haggai Maron
22
18
0
06 Mar 2023
Multi-Scale Message Passing Neural PDE Solvers
Multi-Scale Message Passing Neural PDE Solvers
Léonard Equer
T. Konstantin Rusch
Siddhartha Mishra
AI4CE
24
12
0
07 Feb 2023
Not too little, not too much: a theoretical analysis of graph
  (over)smoothing
Not too little, not too much: a theoretical analysis of graph (over)smoothing
Nicolas Keriven
32
88
0
24 May 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,104
0
27 Apr 2021
Beyond Low-frequency Information in Graph Convolutional Networks
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
94
561
0
04 Jan 2021
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
169
1,078
0
13 Feb 2020
Multi-scale Attributed Node Embedding
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
148
836
0
28 Sep 2019
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
1