Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.15328
Cited By
v1
v2 (latest)
Sparse Random Networks for Communication-Efficient Federated Learning
30 September 2022
Berivan Isik
Francesco Pase
Deniz Gunduz
Tsachy Weissman
M. Zorzi
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Sparse Random Networks for Communication-Efficient Federated Learning"
33 / 33 papers shown
Title
PRISM: Privacy-Preserving Improved Stochastic Masking for Federated Generative Models
Kyeongkook Seo
Dong-Jun Han
Jaejun Yoo
118
1
0
11 Mar 2025
FedPeWS: Personalized Warmup via Subnetworks for Enhanced Heterogeneous Federated Learning
Nurbek Tastan
Samuel Horváth
Martin Takáč
Karthik Nandakumar
FedML
125
0
0
03 Oct 2024
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
84
49
0
19 Aug 2021
Masked Training of Neural Networks with Partial Gradients
Amirkeivan Mohtashami
Martin Jaggi
Sebastian U. Stich
100
23
0
16 Jun 2021
Privacy Amplification Via Bernoulli Sampling
Jacob Imola
Kamalika Chaudhuri
FedML
49
7
0
21 May 2021
An Information-Theoretic Justification for Model Pruning
Berivan Isik
Tsachy Weissman
Albert No
127
36
0
16 Feb 2021
Time-Correlated Sparsification for Communication-Efficient Federated Learning
Emre Ozfatura
Kerem Ozfatura
Deniz Gunduz
FedML
73
49
0
21 Jan 2021
Slot Machines: Discovering Winning Combinations of Random Weights in Neural Networks
Maxwell Mbabilla Aladago
Lorenzo Torresani
35
10
0
16 Jan 2021
Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling
Vitaly Feldman
Audra McMillan
Kunal Talwar
FedML
72
161
0
23 Dec 2020
Characterising Bias in Compressed Models
Sara Hooker
Nyalleng Moorosi
Gregory Clark
Samy Bengio
Emily L. Denton
67
185
0
06 Oct 2020
LotteryFL: Personalized and Communication-Efficient Federated Learning with Lottery Ticket Hypothesis on Non-IID Datasets
Ang Li
Jingwei Sun
Binghui Wang
Lin Duan
Sicheng Li
Yiran Chen
H. Li
FedML
82
127
0
07 Aug 2020
FetchSGD: Communication-Efficient Federated Learning with Sketching
D. Rothchild
Ashwinee Panda
Enayat Ullah
Nikita Ivkin
Ion Stoica
Vladimir Braverman
Joseph E. Gonzalez
Raman Arora
FedML
73
367
0
15 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
79
277
0
02 Jul 2020
Optimal Lottery Tickets via SubsetSum: Logarithmic Over-Parameterization is Sufficient
Ankit Pensia
Shashank Rajput
Alliot Nagle
Harit Vishwakarma
Dimitris Papailiopoulos
58
103
0
14 Jun 2020
rTop-k: A Statistical Estimation Approach to Distributed SGD
L. P. Barnes
Huseyin A. Inan
Berivan Isik
Ayfer Özgür
59
65
0
21 May 2020
Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning
Shaoxiong Ji
Wenqi Jiang
A. Walid
Xue Li
FedML
88
66
0
21 Mar 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
259
6,261
0
10 Dec 2019
What's Hidden in a Randomly Weighted Neural Network?
Vivek Ramanujan
Mitchell Wortsman
Aniruddha Kembhavi
Ali Farhadi
Mohammad Rastegari
66
357
0
29 Nov 2019
Model Pruning Enables Efficient Federated Learning on Edge Devices
Yuang Jiang
Shiqiang Wang
Victor Valls
Bongjun Ko
Wei-Han Lee
Kin K. Leung
Leandros Tassiulas
75
462
0
26 Sep 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
90
323
0
31 May 2019
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask
Hattie Zhou
Janice Lan
Rosanne Liu
J. Yosinski
UQCV
55
387
0
03 May 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
74
1,358
0
07 Mar 2019
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
186
427
0
29 Nov 2018
Subsampled Rényi Differential Privacy and Analytical Moments Accountant
Yu Wang
Borja Balle
S. Kasiviswanathan
85
398
0
31 Jul 2018
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
Borja Balle
Gilles Barthe
Marco Gaboardi
84
389
0
04 Jul 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
240
3,473
0
09 Mar 2018
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
136
1,407
0
05 Dec 2017
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
140
989
0
22 May 2017
Sparse Communication for Distributed Gradient Descent
Alham Fikri Aji
Kenneth Heafield
66
741
0
17 Apr 2017
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
306
4,646
0
18 Oct 2016
Ternary Neural Networks for Resource-Efficient AI Applications
Hande Alemdar
V. Leroy
Adrien Prost-Boucle
F. Pétrot
59
204
0
01 Sep 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
216
6,130
0
01 Jul 2016
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
326
18,625
0
06 Feb 2015
1