Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.15259
Cited By
On the Impossible Safety of Large AI Models
30 September 2022
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Impossible Safety of Large AI Models"
41 / 41 papers shown
Title
On the Byzantine Fault Tolerance of signSGD with Majority Vote
Emanuele Mengoli
Luzius Moll
Virgilio Strozzi
El-Mahdi El-Mhamdi
AAML
FedML
91
1
0
26 Feb 2025
On the Workflows and Smells of Leaderboard Operations (LBOps): An Exploratory Study of Foundation Model Leaderboards
Zhimin Zhao
A. A. Bangash
F. Côgo
Bram Adams
Ahmed E. Hassan
102
1
0
04 Jul 2024
Large Language Models for Cyber Security: A Systematic Literature Review
HanXiang Xu
Shenao Wang
Ningke Li
Kaidi Wang
Yanjie Zhao
Kai Chen
Ting Yu
Yang Liu
Haoyu Wang
102
40
0
08 May 2024
Planting Undetectable Backdoors in Machine Learning Models
S. Goldwasser
Michael P. Kim
Vinod Vaikuntanathan
Or Zamir
AAML
45
71
0
14 Apr 2022
SparseFed: Mitigating Model Poisoning Attacks in Federated Learning with Sparsification
Ashwinee Panda
Saeed Mahloujifar
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
FedML
AAML
48
87
0
12 Dec 2021
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
95
185
0
06 Dec 2021
An Empirical Survey of the Effectiveness of Debiasing Techniques for Pre-trained Language Models
Nicholas Meade
Elinor Poole-Dayan
Siva Reddy
63
127
0
16 Oct 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
227
366
0
13 Oct 2021
FedKD: Communication Efficient Federated Learning via Knowledge Distillation
Chuhan Wu
Fangzhao Wu
Lingjuan Lyu
Yongfeng Huang
Xing Xie
FedML
72
387
0
30 Aug 2021
Selective Differential Privacy for Language Modeling
Weiyan Shi
Aiqi Cui
Evan Li
R. Jia
Zhou Yu
46
69
0
30 Aug 2021
Process for Adapting Language Models to Society (PALMS) with Values-Targeted Datasets
Irene Solaiman
Christy Dennison
85
225
0
18 Jun 2021
Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP
Timo Schick
Sahana Udupa
Hinrich Schütze
306
385
0
28 Feb 2021
Approximate Byzantine Fault-Tolerance in Distributed Optimization
Shuo Liu
Nirupam Gupta
Nitin H. Vaidya
60
43
0
22 Jan 2021
Persistent Anti-Muslim Bias in Large Language Models
Abubakar Abid
Maheen Farooqi
James Zou
AILaw
108
552
0
14 Jan 2021
Training Data Leakage Analysis in Language Models
Huseyin A. Inan
Osman Ramadan
Lukas Wutschitz
Daniel Jones
Victor Rühle
James Withers
Robert Sim
MIACV
PILM
51
9
0
14 Jan 2021
Learning from History for Byzantine Robust Optimization
Sai Praneeth Karimireddy
Lie He
Martin Jaggi
FedML
AAML
67
180
0
18 Dec 2020
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
486
1,917
0
14 Dec 2020
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?
Gavin Brown
Mark Bun
Vitaly Feldman
Adam D. Smith
Kunal Talwar
292
99
0
11 Dec 2020
Identity and Personhood in Digital Democracy: Evaluating Inclusion, Equality, Security, and Privacy in Pseudonym Parties and Other Proofs of Personhood
Bryan Ford
31
14
0
04 Nov 2020
The Limits of Differential Privacy (and its Misuse in Data Release and Machine Learning)
J. Domingo-Ferrer
David Sánchez
Alberto Blanco-Justicia
68
108
0
04 Nov 2020
Supervised Contrastive Learning for Pre-trained Language Model Fine-tuning
Beliz Gunel
Jingfei Du
Alexis Conneau
Ves Stoyanov
60
505
0
03 Nov 2020
On the Universality of the Double Descent Peak in Ridgeless Regression
David Holzmüller
32
13
0
05 Oct 2020
The Radicalization Risks of GPT-3 and Advanced Neural Language Models
Kris McGuffie
Alex Newhouse
60
151
0
15 Sep 2020
Collaborative Learning in the Jungle (Decentralized, Byzantine, Heterogeneous, Asynchronous and Nonconvex Learning)
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Arsany Guirguis
L. Hoang
Sébastien Rouault
FedML
70
67
0
03 Aug 2020
Early Stopping in Deep Networks: Double Descent and How to Eliminate it
Reinhard Heckel
Fatih Yilmaz
58
45
0
20 Jul 2020
Byzantine-Resilient SGD in High Dimensions on Heterogeneous Data
Deepesh Data
Suhas Diggavi
FedML
51
37
0
16 May 2020
Private Mean Estimation of Heavy-Tailed Distributions
Gautam Kamath
Vikrant Singhal
Jonathan R. Ullman
78
100
0
21 Feb 2020
Implicit Regularization of Random Feature Models
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
59
83
0
19 Feb 2020
Why are Adaptive Methods Good for Attention Models?
J.N. Zhang
Sai Praneeth Karimireddy
Andreas Veit
Seungyeon Kim
Sashank J. Reddi
Surinder Kumar
S. Sra
90
80
0
06 Dec 2019
Recent Advances in Algorithmic High-Dimensional Robust Statistics
Ilias Diakonikolas
D. Kane
OOD
57
182
0
14 Nov 2019
Fine-Tuning Language Models from Human Preferences
Daniel M. Ziegler
Nisan Stiennon
Jeff Wu
Tom B. Brown
Alec Radford
Dario Amodei
Paul Christiano
G. Irving
ALM
463
1,727
0
18 Sep 2019
Robust multivariate mean estimation: the optimality of trimmed mean
Gabor Lugosi
S. Mendelson
52
125
0
26 Jul 2019
SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems
Alex Jinpeng Wang
Yada Pruksachatkun
Nikita Nangia
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
256
2,312
0
02 May 2019
The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy
T. Tony Cai
Yichen Wang
Linjun Zhang
66
168
0
12 Feb 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
227
1,647
0
28 Dec 2018
Applied Federated Learning: Improving Google Keyboard Query Suggestions
Timothy Yang
Galen Andrew
Hubert Eichner
Haicheng Sun
Wei Li
Nicholas Kong
Daniel Ramage
F. Beaufays
FedML
87
623
0
07 Dec 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
1.1K
7,154
0
20 Apr 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
60
419
0
05 Feb 2018
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
336
4,626
0
10 Nov 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
201
6,121
0
01 Jul 2016
The Composition Theorem for Differential Privacy
Peter Kairouz
Sewoong Oh
Pramod Viswanath
110
681
0
04 Nov 2013
1