ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.14430
  4. Cited By
Minimax Optimal Kernel Operator Learning via Multilevel Training

Minimax Optimal Kernel Operator Learning via Multilevel Training

28 September 2022
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
ArXivPDFHTML

Papers citing "Minimax Optimal Kernel Operator Learning via Multilevel Training"

12 / 12 papers shown
Title
Operator Learning Using Random Features: A Tool for Scientific Computing
Operator Learning Using Random Features: A Tool for Scientific Computing
Nicholas H. Nelsen
Andrew M. Stuart
39
12
0
12 Aug 2024
Optimal Estimation of Structured Covariance Operators
Optimal Estimation of Structured Covariance Operators
Omar Al Ghattas
Jiaheng Chen
D. Sanz-Alonso
Nathan Waniorek
31
3
0
04 Aug 2024
Base Models for Parabolic Partial Differential Equations
Base Models for Parabolic Partial Differential Equations
Xingzi Xu
Ali Hasan
Jie Ding
Vahid Tarokh
35
1
0
17 Jul 2024
Operator Learning: Algorithms and Analysis
Operator Learning: Algorithms and Analysis
Nikola B. Kovachki
S. Lanthaler
Andrew M. Stuart
40
22
0
24 Feb 2024
Spectrally Transformed Kernel Regression
Spectrally Transformed Kernel Regression
Runtian Zhai
Rattana Pukdee
Roger Jin
Maria-Florina Balcan
Pradeep Ravikumar
BDL
21
2
0
01 Feb 2024
A Mathematical Guide to Operator Learning
A Mathematical Guide to Operator Learning
Nicolas Boullé
Alex Townsend
31
36
0
22 Dec 2023
Covariance Operator Estimation: Sparsity, Lengthscale, and Ensemble
  Kalman Filters
Covariance Operator Estimation: Sparsity, Lengthscale, and Ensemble Kalman Filters
Omar Al Ghattas
Jiaheng Chen
D. Sanz-Alonso
Nathan Waniorek
21
4
0
25 Oct 2023
Error Bounds for Learning with Vector-Valued Random Features
Error Bounds for Learning with Vector-Valued Random Features
S. Lanthaler
Nicholas H. Nelsen
27
12
0
26 May 2023
Domain Generalization by Functional Regression
Domain Generalization by Functional Regression
Markus Holzleitner
S. Pereverzyev
Werner Zellinger
OOD
21
4
0
09 Feb 2023
Learning linear operators: Infinite-dimensional regression as a
  well-behaved non-compact inverse problem
Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem
Mattes Mollenhauer
Nicole Mücke
T. Sullivan
22
24
0
16 Nov 2022
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
205
2,282
0
18 Oct 2020
A note on estimation in Hilbertian linear models
A note on estimation in Hilbertian linear models
Siegfried Hormann
Łukasz Kidziński
68
34
0
14 Aug 2012
1