Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.10861
Cited By
A novel corrective-source term approach to modeling unknown physics in aluminum extraction process
22 September 2022
Haakon Robinson
E. Lundby
Adil Rasheed
J. Gravdahl
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A novel corrective-source term approach to modeling unknown physics in aluminum extraction process"
5 / 5 papers shown
Title
Sparse neural networks with skip-connections for identification of aluminum electrolysis cell
E. Lundby
Haakon Robinson
Adil Rasheed
I. Halvorsen
J. Gravdahl
30
2
0
02 Jan 2023
Artificial intelligence-driven digital twin of a modern house demonstrated in virtual reality
Elias Mohammed Elfarri
Adil Rasheed
Omer San
29
16
0
14 Dec 2022
Sparse deep neural networks for modeling aluminum electrolysis dynamics
E. Lundby
Adil Rasheed
I. Halvorsen
J. Gravdahl
26
14
0
13 Sep 2022
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
Physics guided machine learning using simplified theories
Suraj Pawar
Omer San
Burak Aksoylu
Adil Rasheed
T. Kvamsdal
PINN
AI4CE
105
106
0
18 Dec 2020
1