ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.10040
  4. Cited By
Hybrid Learning- and Model-Based Planning and Control of In-Hand
  Manipulation

Hybrid Learning- and Model-Based Planning and Control of In-Hand Manipulation

20 September 2022
Rana Soltani-Zarrin
K. Yamane
Rianna M. Jitosho
ArXivPDFHTML

Papers citing "Hybrid Learning- and Model-Based Planning and Control of In-Hand Manipulation"

9 / 9 papers shown
Title
Learning Hierarchical Control for Robust In-Hand Manipulation
Learning Hierarchical Control for Robust In-Hand Manipulation
Tingguang Li
K. Srinivasan
Max Meng
Wenzhen Yuan
Jeannette Bohg
48
41
0
24 Oct 2019
Deep Dynamics Models for Learning Dexterous Manipulation
Deep Dynamics Models for Learning Dexterous Manipulation
Anusha Nagabandi
K. Konolige
Sergey Levine
Vikash Kumar
210
410
0
25 Sep 2019
Understanding the impact of entropy on policy optimization
Understanding the impact of entropy on policy optimization
Zafarali Ahmed
Nicolas Le Roux
Mohammad Norouzi
Dale Schuurmans
57
230
0
27 Nov 2018
Learning Dexterous In-Hand Manipulation
Learning Dexterous In-Hand Manipulation
OpenAI OpenAI
Marcin Andrychowicz
Bowen Baker
Maciek Chociej
Rafal Jozefowicz
...
Szymon Sidor
Joshua Tobin
Peter Welinder
Lilian Weng
Wojciech Zaremba
70
1,865
0
01 Aug 2018
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning
  and Demonstrations
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations
Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
Giulia Vezzani
John Schulman
E. Todorov
Sergey Levine
98
1,079
0
28 Sep 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
208
18,685
0
20 Jul 2017
Domain Randomization for Transferring Deep Neural Networks from
  Simulation to the Real World
Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World
Joshua Tobin
Rachel Fong
Alex Ray
Jonas Schneider
Wojciech Zaremba
Pieter Abbeel
169
2,948
0
20 Mar 2017
Data-Driven Grasp Synthesis - A Survey
Data-Driven Grasp Synthesis - A Survey
Jeannette Bohg
A. Morales
Tamim Asfour
Danica Kragic
49
1,028
0
10 Sep 2013
Sampling-based Algorithms for Optimal Motion Planning
Sampling-based Algorithms for Optimal Motion Planning
S. Karaman
Emilio Frazzoli
72
4,660
0
05 May 2011
1