Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.09988
Cited By
v1
v2
v3 (latest)
Investigating and Mitigating Failure Modes in Physics-informed Neural Networks (PINNs)
20 September 2022
S. Basir
PINN
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Investigating and Mitigating Failure Modes in Physics-informed Neural Networks (PINNs)"
15 / 15 papers shown
Title
Critical Investigation of Failure Modes in Physics-informed Neural Networks
S. Basir
Inanc Senocak
PINN
AI4CE
62
21
0
20 Jun 2022
Physics and Equality Constrained Artificial Neural Networks: Application to Forward and Inverse Problems with Multi-fidelity Data Fusion
S. Basir
Inanc Senocak
PINN
AI4CE
79
70
0
30 Sep 2021
Characterizing possible failure modes in physics-informed neural networks
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINN
AI4CE
116
647
0
02 Sep 2021
Physics-informed neural networks for solving Reynolds-averaged Navier
\unicode
x
2013
\unicode{x2013}
\unicode
x
2013
Stokes equations
Hamidreza Eivazi
M. Tahani
P. Schlatter
Ricardo Vinuesa
PINN
AI4CE
59
265
0
22 Jul 2021
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
80
459
0
07 Sep 2020
A Dual-Dimer Method for Training Physics-Constrained Neural Networks with Minimax Architecture
Dehao Liu
Yan Wang
123
75
0
01 May 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
520
42,449
0
03 Dec 2019
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
Georgios Kissas
Yibo Yang
E. Hwuang
W. Witschey
John A. Detre
P. Perdikaris
AI4CE
123
373
0
13 May 2019
Deep Learning of Vortex Induced Vibrations
M. Raissi
Zhicheng Wang
M. Triantafyllou
George Karniadakis
AI4CE
60
376
0
26 Aug 2018
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
252
1,893
0
28 Dec 2017
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
121
1,387
0
30 Sep 2017
DGM: A deep learning algorithm for solving partial differential equations
Justin A. Sirignano
K. Spiliopoulos
AI4CE
91
2,063
0
24 Aug 2017
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
204
6,199
0
15 Sep 2016
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
326
18,625
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
1