ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.09977
  4. Cited By
Learning Bilinear Models of Actuated Koopman Generators from
  Partially-Observed Trajectories
v1v2v3 (latest)

Learning Bilinear Models of Actuated Koopman Generators from Partially-Observed Trajectories

20 September 2022
Samuel E. Otto
Sebastian Peitz
C. Rowley
ArXiv (abs)PDFHTML

Papers citing "Learning Bilinear Models of Actuated Koopman Generators from Partially-Observed Trajectories"

14 / 14 papers shown
Title
The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving
  Dynamical Systems
The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems
Matthew J. Colbrook
81
34
0
06 Sep 2022
Residual Dynamic Mode Decomposition: Robust and verified Koopmanism
Residual Dynamic Mode Decomposition: Robust and verified Koopmanism
Matthew J. Colbrook
Lorna J. Ayton
Máté Szőke
65
62
0
19 May 2022
Rigorous data-driven computation of spectral properties of Koopman
  operators for dynamical systems
Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems
Matthew J. Colbrook
Alex Townsend
88
70
0
29 Nov 2021
Modern Koopman Theory for Dynamical Systems
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
102
417
0
24 Feb 2021
Advantages of Bilinear Koopman Realizations for the Modeling and Control
  of Systems with Unknown Dynamics
Advantages of Bilinear Koopman Realizations for the Modeling and Control of Systems with Unknown Dynamics
Daniel Bruder
Xun Fu
Ram Vasudevan
49
81
0
20 Oct 2020
Data-driven approximation of the Koopman generator: Model reduction,
  system identification, and control
Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
Stefan Klus
Feliks Nuske
Sebastian Peitz
Jan-Hendrik Niemann
C. Clementi
Christof Schütte
72
228
0
23 Sep 2019
Physics-Informed Probabilistic Learning of Linear Embeddings of
  Non-linear Dynamics With Guaranteed Stability
Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability
Shaowu Pan
Karthik Duraisamy
67
138
0
09 Jun 2019
Deep Dynamical Modeling and Control of Unsteady Fluid Flows
Deep Dynamical Modeling and Control of Unsteady Fluid Flows
Jeremy Morton
F. Witherden
A. Jameson
Mykel J. Kochenderfer
AI4CE
66
165
0
18 May 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
81
1,252
0
27 Dec 2017
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
Samuel E. Otto
C. Rowley
AI4CE
46
326
0
04 Dec 2017
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CEBDL
155
360
0
30 Oct 2017
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Naoya Takeishi
Yoshinobu Kawahara
Takehisa Yairi
49
373
0
12 Oct 2017
Learning Deep Neural Network Representations for Koopman Operators of
  Nonlinear Dynamical Systems
Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems
Enoch Yeung
Soumya Kundu
Nathan Oken Hodas
AI4CE
72
385
0
22 Aug 2017
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
285
4,793
0
04 Jan 2016
1