Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.09577
Cited By
Understanding Real-world Threats to Deep Learning Models in Android Apps
20 September 2022
Zizhuang Deng
Kai Chen
Guozhu Meng
Xiaodong Zhang
Ke Xu
Yao Cheng
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Real-world Threats to Deep Learning Models in Android Apps"
19 / 19 papers shown
Title
Offline Model Guard: Secure and Private ML on Mobile Devices
Sebastian P. Bayerl
Tommaso Frassetto
Patrick Jauernig
Korbinian Riedhammer
A. Sadeghi
T. Schneider
Emmanuel Stapf
Christian Weinert
OffRL
52
45
0
05 Jul 2020
Edge Intelligence: Architectures, Challenges, and Applications
Dianlei Xu
Tong Li
Yong Li
Xiang Su
Sasu Tarkoma
Tao Jiang
Jon Crowcroft
Pan Hui
77
29
0
26 Mar 2020
On the Resilience of Biometric Authentication Systems against Random Inputs
Benjamin Zi Hao Zhao
Hassan Jameel Asghar
M. Kâafar
AAML
120
23
0
13 Jan 2020
AI Benchmark: All About Deep Learning on Smartphones in 2019
Andrey D. Ignatov
Radu Timofte
Andrei Kulik
Seungsoo Yang
Ke Wang
Felix Baum
Max Wu
Lirong Xu
Luc Van Gool
ELM
39
220
0
15 Oct 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
87
1,836
0
06 May 2019
Defensive Quantization: When Efficiency Meets Robustness
Ji Lin
Chuang Gan
Song Han
MQ
69
203
0
17 Apr 2019
A First Look at Deep Learning Apps on Smartphones
Mengwei Xu
Jiawei Liu
Yuanqiang Liu
F. Lin
Yunxin Liu
Xuanzhe Liu
HAI
62
181
0
08 Nov 2018
Rethinking the Value of Network Pruning
Zhuang Liu
Mingjie Sun
Tinghui Zhou
Gao Huang
Trevor Darrell
36
1,471
0
11 Oct 2018
AI Benchmark: Running Deep Neural Networks on Android Smartphones
Andrey D. Ignatov
Radu Timofte
William Chou
Ke Wang
Max Wu
Tim Hartley
Luc Van Gool
ELM
68
323
0
02 Oct 2018
Adversarial Robustness Toolbox v1.0.0
Maria-Irina Nicolae
M. Sinn
Minh-Ngoc Tran
Beat Buesser
Ambrish Rawat
...
Nathalie Baracaldo
Bryant Chen
Heiko Ludwig
Ian Molloy
Ben Edwards
AAML
VLM
72
458
0
03 Jul 2018
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramèr
Dan Boneh
FedML
168
396
0
08 Jun 2018
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
Benoit Jacob
S. Kligys
Bo Chen
Menglong Zhu
Matthew Tang
Andrew G. Howard
Hartwig Adam
Dmitry Kalenichenko
MQ
136
3,111
0
15 Dec 2017
Attacking Binarized Neural Networks
A. Galloway
Graham W. Taylor
M. Moussa
MQ
AAML
60
105
0
01 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
269
12,029
0
19 Jun 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
90
892
0
01 Mar 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
461
3,138
0
04 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
226
8,548
0
16 Aug 2016
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks
Kaipeng Zhang
Zhanpeng Zhang
Zhifeng Li
Yu Qiao
CVBM
170
4,954
0
11 Apr 2016
EIE: Efficient Inference Engine on Compressed Deep Neural Network
Song Han
Xingyu Liu
Huizi Mao
Jing Pu
A. Pedram
M. Horowitz
W. Dally
118
2,455
0
04 Feb 2016
1